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A B S T R A C T

Congestive heart failure (CHF) is a degree of cardiac disease occurring as a result of the heart’s

inability to pump enough blood for the human body. In recent studies, coronary artery disease

(CAD) is accepted as the most important cause of CHF. This study focuses on the diagnosis

of both the CHF and the CAD.The Hilbert–Huang transform (HHT), which is effective on non-

linear and non-stationary signals, is used to extract the features from R-R intervals obtained

from the raw electrocardiogram data.The statistical features are extracted from instinct mode

functions that are obtained applying the HHT to R-R intervals. Classification performance

is examined with extracted statistical features using a multilayer perceptron neural network.

The designed model classified the CHF, the CAD patients and a normal control group with

rates of 97.83%, 93.79% and 100%, accuracy, specificity and sensitivity, respectively. Also, early

diagnosis of the CHF was performed by interpretation of the CAD with a classification ac-

curacy rate of 97.53%, specificity of 98.18% and sensitivity of 97.13%. As a result, a single

system having the ability of both diagnosis and early diagnosis of CHF is performed by in-

tegrating the CAD diagnosis method to the CHF diagnosis method.

© 2016 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

An electrocardiogram (ECG) is a signal that records the elec-
trical changes within the heart at regular intervals. Electrodes
with different characteristics are used to obtain ECG signals
(ECGs) from various parts of the body (arms, legs, chest, etc.).
The horizontal plane of the ECG is time; the vertical plane is
the amplitude of the electrical potential [1]. The ECG varies in
frequency band from 0.5 Hz to 100 Hz and varies in ampli-
tude value from 0 mV to 5 mV [2,3].The ECG is used consistently
for the monitoring and diagnosis of atrial and ventricular con-
duction disorders, rhythm disturbances and pericarditis,

heart-related diseases and other systemic functions in the man-
agement of cardiac pacemakers [4]. The ECG has a very crucial
role in monitoring and diagnosis of heart diseases. The ECG
taken during the monitoring process is very important for the
identification of abnormalities that may occur with compli-
cations. Therefore, the analysis, storage and transmission
processes on the ECG in clinical applications have nowadays
become intensively studied [5].

Electrical impulses occur as a result of polarization and de-
polarization. These impulses are presented as P, Q, R, S and T
waves, as seen in Fig. 1 [6]. The sections between the waves
are called segments; the distance between the waves is called
an interval [1]. A P wave occurs as a result of the depolarization
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of the atrium. The duration of the P wave is about 0.11 s and
its amplitude varies from 0.18 mV to 0.22 mV in a normal deri-
vation [7].

A QRS complex occurs as a result of the depolarization of
the ventricle. The Q wave is the first negative wave and the R
wave is the first positive one after the P wave. The S wave is
the first negative wave after the R wave. The different QRS
complex forms are seen in different derivations.The QRS com-
plexes have significant meaningful differences even among
normal subjects [8]. The QRS complex has the maximum am-
plitude in an ECG waveform. Duration of a QRS complex does
not exceed 0.11 s and its amplitude is about 2–3 mV [7]. A T
wave occurs as a result of the repolarization of the ven-
tricles.The duration of the T wave may vary from 0.10 s to 0.25 s
in a normal subject [8].

The studies in recent years have shown the significant re-
lationship between autonomic nervous system (ANS) and
cardiovascular cases. Heart rate variability (HRV) is a method
for evaluating the ANS functionality of the sinus node level.
The HRV is a measurement of the time-domain and the
frequency-domain of beat-to-beat intervals. Beat-to-beat in-
tervals are the length of time between two consecutive R waves.
The time-domain methods usually use the avarage of normal-
to-normal heartbeats.The frequency-domain methods are based
on how the power of the ECG changes with a function of the
frequency [9]. All the computable basic time-domain and the
frequency-domain HRV measures were widely explained in
the literature [9,10].

Congestive heart failure (CHF) is also known as heart failure.
The CHF is a cardiac disease in which a heart does not have
the ability to provide adequate metabolic cardiac output that
a human organism needs. In the case of metabolic needs, the
heart can increase the flow capacity by 200–600%. When the
flow capacity of the heart is exceeded or increased, it cannot
meet metabolic needs of subjects with CHF [11]. Doctors may
recommend one or more of the following ways to diagnose the
CHF: ECG, stress testing, echocardiography, B-type natriuretic
peptide blood test, ejection fraction and cardiac catheterization.

Coronary artery disease (CAD) is a pathological condition
where the diameter of the arteries decreases because of the

cholesterol plaque on the heart wall. In this case, arteries cannot
supply nutrients and oxygen to heart muscles [12]. He et al.
[13] in the United States and Baldasseroni et al. [14] in Italy
found that the CAD is the most risky factor for the CHF. This
case has revealed the necessity for diagnosis of the CAD to early
diagnosis of the risks for CHF. Doctors may recommend one
or more the following ways to diagnose the CAD: ECG,
stress testing, echocardiography, chest X-ray, blood tests
(apolipoprotein A1, fibrinogen, urine albumin/creatinine ratio),
coronary angiography and cardiac catheterization.

In literature, there are various methods to detect ECG dis-
orders. Features were extracted by applying various methods to
the ECG like diagnosing arrhythmia using morphological fea-
tures of QRS complexes and R waves [15].The features of these
disorders were also extracted using wavelet transform [16,17].
Both wavelet transform and Fourier analysis were applied to ECG
beats [18]. One method was used, morphological features of P,
Q, R, S and T waveforms [19–21], whereas another worked on
the phase space portraits of 3-lead ECG from subjects [22]. In
addition, the template matching [23] and principal compo-
nent analysis (PCA) methods [24,25] were used and both of them
were applied to various signal processing problems. Many
methods such as wavelet analysis, discrete Fourier transform,
empirical mode decomposition (EMD), second order difference
plot, wavelet packet decomposition are used to analyze non-
linear biomedical signals. One of the most well-known methods
is the Hilbert–Huang transform (HHT) measurements.The HHT
is a relatively new method used in biomedical data analysis.This
transformation is applicable to non-linear and non-stationary
signals. In recent studies, the HHT is applied to electroencepha-
lography (EEG) signals to diagnose diabetes [26] and to predict
epileptic seizure [27]. The HHT is also applied to audio signals
for extracting features and filtering processes [28], the digital
modulation classification for spectrum sensing [29], and to the
ECG signals to diagnose atrial fibrillation [30] and the CHF [31].
In this study, HHT would be used to design an effective statis-
tical feature extraction model using ECG to provide diagnosis
and early diagnosis of the CHF.Thus, high-dimensional feature
vectors that are formed in combination with instinct mode func-
tions (IMFs) can be interpreted using the statistical analysis on
the diagnosis and early diagnosis of the CHF.

The CHF and the CAD have been the subjects of some
studies. A set of medical examinations and clinical tests are
needed for the definitive diagnosis of the CHF. While some of
the studies on CHF focused on determining the risk factor of
death [32–34], some of them focused on the diagnosis of the
CHF using the HRV measures [10,35,36].The studies could sepa-
rate CHF patients and normal subjects using the short-term
HRV measures, wavelet entropy values, time domain mea-
sures and Poincaré plot measures [10], using the spectral
analysis of HRV with autonomic changes model to diagnose
risk of the CHF [32]; using features obtained applying wavelet
transform and power spectral destiny (PSD) for R-R intervals
[37]; using equal frequency in amplitude and equal width in
time discretization [38]; using low and high frequency com-
ponents, standard deviation (SD) of R-R intervals, daytime, night-
time and sub-maximal heart rate of HRV [34]; and using the
features obtained applying linear discrimination analysis and
the HRV measures [35]. Like the CHF, a set of medical exami-
nations and clinical tests are needed for definitive diagnosis

Fig. 1 – P, Q, R, S, and T waves on ECG.
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of the CAD, too. They could separate the CAD patients and
normal subjects using heart sounds [39]; the subjects’ clini-
cal data such as age, sex, heart rate, blood pressure [40]; Doppler
ultrasound signals [41]; ventricle echocardiographic images [42];
and HRV measures [43–45].

As shown in the literature, HRV measures have usually been
used on diagnostic studies of the CHF and a few of them have
focused on raw ECG. As an alternative to studies in which HRV
measures are used, this method provided greater sensitivity
and higher accuracy performance with integration of diagno-
sis of the CHF and early diagnosis of the CHF by diagnosing
the CAD in the same model using R-R intervals.

The aim of this study is to propose an alternative method
to other studies that used various signal processing methods
on the HRV measurements for the diagnosis and early diag-
nosis of the CHF. A noiseless 3 hour ECG form would be
extracted to solve analysis problems in preprocessing. R-R in-
tervals would be obtained from the extracted noiseless ECGs.
The HHT would be applied to separated R-R intervals and IMFs
would be extracted. The system would extract statistical fea-
tures from the IMFs that are obtained applying the HHT to R-R
intervals. Each instinct mode function (IMF) group obtained
would be classified using multilayer perceptron neural network
(MLPNN). The system would have a two stage classification
model. In the first phase classification, it would separate the
CHF and no-CHF subjects. In the second phase, it would di-
agnose the CAD and Normal subjects between no-CHF subjects.
The classification performances of the diagnosis of the CHF,
the CAD and the normal control group would be examined.

In the following sections, using the databases, the prepro-
cessing of the ECG, the HHT method for feature extraction, the
MLPNN classifier and derivation of classification perfor-
mances were explained, and in the last section obtained results
were discussed.

2. Materials and methods

ECG records were first taken in the structure of designing con-
sidered an early diagnosis system. We preferred moving the
window analysis technique and segmented ECG data into 3 hour
noiseless windows in the preprocessing because of noise and
excessively long ECG records. R-R intervals of noiseless 3 hours
in duration were used in the system. The IMFs were ex-
tracted applying the HHT and statistical features were calculated
for the obtained IMFs in feature extraction. Statistical fea-
tures were classified using an MLPNN. A detailed description
of the system structure is presented in the following sections.

2.1. Databases

In literature, different databases including different diagno-
sis systems were used for the diagnosis of the CHF.The studies
have generally focused on R-R intervals [10,35,36] while others
have focused on [37] databases from the open source Physionet.
Three different databases were used to diagnose CHF and CAD.
These databases are the Normal Sinus Rhythm (NSR) Data-
base, the CHF Database and the Long-Term ST Database.

The first database group [46] includes the NSR database and
the CHF database and used to diagnose the CHF. It includes

54 long-term ECGs of subjects that included 30 men, aged 28.5
to 76, and 24 women, aged 58 to 73 in the NSR. It also in-
cluded 29 long-term ECGs of subjects aged 34 to 79 and included
8 men and 2 women and 21 individuals of unknown gender
all with CHF. The individual recordings of databases are about
24 hours in duration. The ECGs were digitized at 128 samples
per second.

The second database group includes the Long-Term ST Da-
tabase [47]. The Long-Term ST database contains 86 long-
term ECGs from 80 subjects, chosen to exhibit a variety of events
of ST segment changes. There are 26 CAD subjects labeled as
undiagnosed and 60 CAD subjects labeled as diagnosed in this
database. The individual recordings of the Long-Term ST da-
tabase are between 21 and 24 hours in duration, and contain
two or three lead-ECGs.

Lead I-ECG type is selected in this study. Characteristics of
Lead I are the same in both first group and second group da-
tabases. Each ECG has been digitized at 250 samples per second.

2.2. Preprocessing

In each group of databases, the sampling rates are the same.
But when the diagnoses of the CHF and the CAD are inte-
grated into one system, an analysis problem occurs because
of the large number of samples. Therefore, we would like to
call attention to the fact that all data records are obtained from
the Physionet databases used as R-R intervals. As we men-
tioned in the introduction, an ECG has 6 waves.The dominant
peaks on an ECG are R-waves. Sometimes, other waves may
not be recorded because of physical and recording condi-
tions. Due to this characteristic of R waves, it is easy to be
detected on an ECG. In addition, an ECG has a signal charac-
teristic that can be easily affected. But R-R intervals are less
affected by noise in an ECG signal. R-R intervals assess an es-
timate of cardiac output. These characteristic features of R-R
intervals are the reason for extracting R-R intervals instead of
using the raw ECG in this study.

The information in a biomedical signal is unevenly distrib-
uted. Dispersion of signals can be expressed as bandwidth
correlating with detected wave forms [48]. Therefore, the non-
uniform R-R intervals that are obtained from the ECG allow
decreasing sample size by eliminating the less important signal
parts while the characteristic features remain well repre-
sented. So, we extracted R-R intervals that have a 128 Hz
sampling rate using PhysioToolkit software [46] from the three
databases. The PhysioToolkit software has an ability to detect
P, Q, R, S, T waves and QRS complexes, and to extract R-R in-
tervals from the raw ECG and can convert them to MATLAB
files.

Analysis problems occurred because signals were too long
during the transformation processes. There was much noise.
The noise in an ECG may be correlated with the physical ac-
tivity, recording conditions or heart rate symptoms. These
conditions occur as a result of the long length of the R-R in-
terval time. R-R intervals vary in length from about 0.7 to 0.9
seconds. We coded a class which controls if the R-R interval
segment has a time that is longer than 0.9 second and shorter
than 0.7 second. If the case is true, the code restarts to select
a noiseless segment until a 3 hour R-R interval is extracted.
Therefore, 3 hour noiseless ECGs were extracted from the raw
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ECGs. R-R intervals were obtained from the selected 3 hour
noiseless ECGs. The IMFs were extracted by applying the EMD
to each extracted noiseless R-R intervals. Hilbert transform (HT)
was applied continuously to each IMF and the Hilbert spec-
tral analysis (HSA) is plotted from the signals which were
obtained with the same number of the IMFs.

2.3. Hilbert–Huang transform

The HHT is one of the effective ECG analysis techniques which
include both the EMD and the HT.The HHT is an adaptive analy-
sis method on both the ECG and R-R intervals which are non-
stationary and non-linear signals.The mathematical algorithm
of the method could not be defined clearly due to the flexibil-
ity of the stoppage criterion [27]. The HHT consists of a two-
step analysis.The first step is the EMD.The EMD extracts IMFs
which are frequency-modulated signals about processes. The
instantaneous frequency and amplitude values in the time-
frequency domain are extracted from each obtained IMF by
applying the HT.The HHT provides more distinctive, clear and
precise results than any other method for non-linear and non-
stationary signals [49]. Considering all these characteristics, our
work focuses on the HHT analysis on non-uniformly sampled
R-R intervals.

2.3.1. Empirical mode decomposition
The EMD is a flexible analysis method that is used for non-
linear and non-stationary processes. The most important
characteristic that separates this algorithm from the other trans-
formations is the ability of producing oscillations apart from
the signal by assuming a random signal which consists of its
own self oscillation mode at different frequencies. Each oscil-
lation is symmetrical relative to the local mean of the local
extreme. Each oscillation is indicated by an IMF that is an
amplitude/frequency modulated signal. All IMFs from a signal
form a complete and nearly orthogonal basis for the original
signal. IMF is selected to provide the following two basic con-
ditions [29,49]: (1) in the whole dataset, the number of extrema
and the number of zero-crossings must be either equal or differ
at most by one, and (2) at any t time at signal, the mean value
of the envelope defined by the local maximum and the enve-
lope defined by the local minimum must be equal.

Due to the success of the EMD on non-linear and non-
stationary signals, the boundary problem and mode mixing
problem are the basic defects on finite time series. The

maximum and minimum envelopes with cubic spline func-
tion are distorted badly because of divergence on both the end
point of the signal and inside signal.Various methods were pro-
posed to solve the defect and the boundary problem, such as
neural network model [50], autoregressive models [51] and local
self-similarity functions [52]. In this study, an efficient simi-
larity model is utilized to obtain spline interpolation and it is
described in detail in [52].

Specified conditions are that extract IMFs are used to prevent
the negative frequency formation and to keep instantaneous
frequency of the narrow band signal on the band while cal-
culating the instantaneous frequency with the HT. The mean
value of the envelope defined using the local maximum values
and the envelope defined using the local minimum values are
used to calculate the local mean. The local maximum, local
minimum and local mean are shown in Fig. 2. A new form of
the signal is obtained by subtracting the calculated local mean
from the original signal. This new form of the signal is con-
trolled if it satisfies the basic conditions of the IMF. If it does
not satisfy the conditions, the local mean value is recalcu-
lated by using the local maximum and local minimum values
of the new form of the signal. This procedure is repeated until
a new form of the signal satisfies the conditions obtained by
the IMF. When The IMF is extracted, the residual signal is ex-
tracted by the IMF from the original signal and the same IMF
extraction processes are continually repeated for the re-
sidual signal until obtaining a monotonic function for the whole
signal [53]. The EMD has a detailed formula calculation in lit-
erature [27,29,49].

X t c rj
j

n

n( ) = +
=
∑

1

(1)

It is not possible to extract new IMF from the residual signal
when it has only one local extreme or obtains only one mono-
tonic function for the whole signal. In this case, the EMD process
ends. In Equation (1) c represents the number of extracted IMFs,
rn represents the residual signal and n represents the repeti-
tion number of the algorithm steps [27]:

Straightforward implementation of sifting process pro-
duces mode mixing problems due to the IMF restitution.
Different IMFs may be extracted for same signal in the EMD
process because of the intermittency signals with high frequecy,
signal loss, and noises. The unfixed feature extraction stages
results with big problems for classification stages of the pattern

Fig. 2 – A randomly selected part of the EMD process on the IMFs of R-R intervals from a random CHF patient.
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recognition algorithms. When we tested some of the random
R-R interval time series with the traditional EMD algorithm,
we did not meet any mode mixing problem, even so we uti-
lized the Ensemble EMD model to avoid the possible noises that
would produce mode-mixing problem. The Ensemble EMD is
the mean of the corresponding IMFs that are obtained with tra-
ditional EMD by adding white noise series cancel each other
signal at each stage of adaptively and locally decomposition.
A unique residue signal is calculated for decomposing each
mode. Adding white noise series procedure continues until the
IMF approximates to the required IMF [54].

2.3.2. Hilbert transform
The most important and initial feature of non-linear signals
is inherent wave frequency modulation that shows the in-
stantaneous frequency value in one cycle. Instantaneous
frequency values give the signal characteristics in the most
comprehensible way. The HT is a process for computing the
instantaneous frequency characteristics of the signal [27,49].
The complex conjugation of a real-valued x(t) function that is
applied to the HT equals the y(t) function.

y t H x t
x
t

d( ) = ( )[ ] = ( )
−−∞

∞

∫ τ
τ

τ (2)

The analytical x(t) function can be written by using the HT
as follows:

z t x t jy t a t ej t( ) = ( ) + ( ) = ( ) ( )θ (3)

The instantaneous amplitude and phase functions of ex-
pressed formula above are as follows:

a t x t y t( ) = ( ) + ( )2 2 (4)

θ t arctan
y t
x t

( ) = ( )
( )

⎛
⎝⎜

⎞
⎠⎟ (5)

The instantaneous frequency information can be ob-
tained from the functions above:

ω θ
t

d t
dt

( ) = ( )
(6)

f t
d t

dt
( ) = ( )1

2π
θ

(7)

The analytical expression of x(t) can be obtained by apply-
ing the HT to each IMF that is extracted after applying the EMD
to the x(t) signal. The instantaneous frequency and ampli-
tude values of each IMF can be calculated with the help of
Equations (4)–(7):

x t a t ei
j t dt

i

n
i( ) = ( )⎧

⎨
⎩

⎫
⎬
⎭

( )

=
∑� ω

1

(8)

Equation (8) indicates that each IMF is the amplitude or fre-
quency modulated signal. The EMD performs an exceedingly
good parsing process by analyzing the signal in various am-
plitude and frequency scales for non-stationary signals [27].

The amplitude of the frequency-time distribution (ω) is called
the HSA. The marginal spectrum can be calculated by using
the HSA [27,49].

h H t dt
t

ω ω( ) = ( )∫ ,
0

(9)

3. Classifier and performance evaluation

The MLPNN is a learning model that calculates the output
value(s) using input values, conventional neuron weights or
randomly taken weights. The most important phase of the
learning model is called training.The training phase is carried
out to obtain the output weights, calculated input values and
available neuron weights equal to zero. But this case cannot
always be performed. The main aim in the MLPNN is obtain-
ing the minimum error between the actual output value(s) and
calculated output value(s). The neuron weights are adapted
using learning rate and learning algorithms during the train-
ing phase. Some of the advantages of the MLPNN include the
ability of using the results in a condition known to decide about
unknown situations and the high degree of efficiency and re-
liability that determines the validity of the systems [55].

x x wo k ko
k

= ( )⎛
⎝⎜

⎞
⎠⎟∑ϕ (10)

In Equation (10) where φ() is activation function, xk, the value
of k number node and wko is the weight of connection between
the k number node and y output.

The MLPNN has the most widely used network architec-
ture in pattern classifications. The MLPNN has an input layer,
hidden layer(s) and an output layer (Fig. 3). Each layer may have
various numbers of neurons depending on the complexity of
the problem. Every neuron has been weighted to the average
of the inputs through the activation function. The most com-
monly used activation function in the MLPNN is sigmoid [56].

Some of the statistical computations had to be used in vali-
dation of medical diagnosis systems [30,55]. Accuracy (ACC),
Specificity (SPE) and Sensitivity (SEN) are used to evaluate per-
formance of the designed system.

SEN
TP

TP FN
=

+
(11)

SPE
TN

TN FP
=

+
(12)

All ACC
TP

All beats
ii

N

= =∑ 1 (13)

In the Equations (11)–(13), TP (True Positives) is the number
of signals with the required correct specifications; TN (True
Negatives) is the number of other signals correctly classified;
FP (False Positives) is the number of signals with the required
specifications incorrectly classified; and FN (False Negatives)
is the number of other signals incorrectly classified by the de-
signed integrated system.
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4. Experimental results

The various signals (ECG, EEG, etc.) of diseases are analyzed
with digital signal processing methods in medical diagnosis
systems. In the literature, the raw ECG and the HRV mea-
sures have been the primarily used signals in the diagnosis of
heart diseases. In this study, R-R intervals are used to make
the diagnosis of the CHF and early diagnosis of the CHF by the
diagnosis of the CAD or a normal group (Fig. 4).

When the ECG signals in three databases are analyzed, it
is seen that the ECG signals are noisy and too long for analy-
sis. The noisy parts of signals distort some features of the
patient’s disease. Long-time (24 hours) R-R intervals might not
be necessary to analyze conditions on an ECG, as the analy-
sis of the short-time HRV might be sufficient and more effective.
The length of the selection of the short segments from the origi-
nal R-R intervals is a situation that should be tested with various
lengths. When we tested with 24 hour long-time HRV, it caused
analysis problems like long time or endless calculations. Ac-
cording to the recommendations in the literature for the short-
term HRV [9], a 5 min short-time HRV is commonly used. In
our experiments, when the HHT with the addition of white
noise in each ensemble member has an SD of 0.1 in the EMD
was applied to 5 min R-R intervals, IMFs ranging at least 7 and
8 were obtained. Statistical features have a low performance
(seen in Table 1) for this diagnosis system. IMFs ranging at least
10 and 13 obtained from 3 hour R-R intervals in duration are
seen in Table 2. The higher classification performances were
achieved using 3 hour R-R intervals. In light of this situation,
meaningful parts were lost for diagnosing CHF when R-R in-
terval was segmented into such short forms.

This study reached better performances in both the diag-
nosis of the CAD and the CHF by using 3 hour length R-R
intervals. Therefore, we discussed separating noiseless 3 hour
ECG forms to solve analysis problems in the preprocessing. R-R
intervals were obtained from 3 hour noiseless ECGs on all three
databases.The EMD is an analysis method that takes the whole
signal as an input to indicate the IMFs. So, a sample size of

Fig. 3 – Structure of the artificial neural network.

Table 1 – Accuracy, sensitivity and specificity
achievements of diagnosis of CHF with 5 min R-R
intervals.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 r(x)

SEN 56.67 45.56 42.96 33.70 34.44 67.78 25.19 40.00
SPE 66.21 55.17 68.97 65.52 84.83 46.21 38.62 54.48
ACC 60.00 48.92 52.05 44.82 52.05 60.24 29.88 45.06 Fig. 4 – Structure of proposed diagnosis system.
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the processing window in the EMD with 10 800 of datapoints
for 3 hour length R-R intervals is utilized in analysis process.
The EMD was applied to separate R-R intervals and the IMFs
were extracted. R-R intervals obtained from the NSR and R-R
intervals obtained from the CHF subjects and some of the ob-
tained distributions of the IMFs extracted by applying the HHT
are shown in Fig. 5.

Various numbers of IMFs ranging from at least 10 and at
most 14 were extracted for each R-R interval for 169 subjects
from three databases. Various numbers of IMFs may cause
analysis problems in the designed system when IMFs were
grouped according to the number. So, analysis of the IMF groups
is impossible, because of various numbers of the IMFs.We need
the same size of features set for proper classification.We cannot
ignore the last few IMFs (numbered 11–14) because they may
have a significance in the diagnosis of the CHF. Therefore, we

extracted the first 10 numbers of IMFs and we summed up the
remaining IMFs from IMF 11 to the last as r(x).

X t c r xj
j

( ) = + ( )
=
∑

1

10

(14)

r x c rj
j

end

n( ) = +
=
∑

11
(15)

The HSA was used for examining each IMF’s instanta-
neous frequency as functions of time by applying the HT. The
HT allows deriving the analytic representation of a signal and
includes the phase information that depends on the phase in-
formation about signals. As a result of the HSA, the frequency-
time distribution of signal amplitude which permits the
identification of localized features is obtained (seen in Fig. 6).

Table 2 – Accuracy, sensitivity and specificity achievements of diagnosis of CHF with 3 hours R-R intervals.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 r(x)

Sensitivity 74.07 79.26 100.00 97.41 92.22 84.07 85.71 85.56 72.59 78.89 84.98
Specificity 62.07 80.00 93.79 90.34 81.38 71.03 77.77 75.17 67.59 66.21 76.54
Accuracy 69.88 79.52 97.83 94.94 88.43 79.52 82.63 81.93 70.84 74.46 82.00

Fig. 5 – Randomly selected R-R intervals and samples of IMFs distribution: (a) R-R intervals obtained from subject with the
CHF and some of IMFs, (b) R-R intervals obtained from the NSR subject and some IMFs.
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Applying the HT, statistical features were extracted from each
IMF and a dataset was created by combining the statistical fea-
tures of each IMF signal. Nine statistical features, minimum
(Min), maximum (Max), skewness (Skw), median, mean, SD,
avarage correlation (Corr), mode and energy of IMFs, were cal-
culated.The statistical features are calculated with the default
parameter values using Matlab 2014b. The Pearson method is
the default type for linear correlation.We correlated each signal
with all other signals in same class and utilized average of the
correlation values as the feature. As seen in Tables 3 and 4,
correlation is the highest responsible feature; mod is the lowest
responsible feature for reducing HRV in both the CHF and the
CAD patients.

The MLPNN classifier was trained using the back-propagation
algorithm. The model has one input layer with 9 statistical
inputs, 2 hidden layers and uses the sigmoid activation func-
tion.The first hidden layer has 6 neurons and the second hidden
layer has 2 neurons. Each neuron has an associated connec-
tion with neurons on adjacent layers. We preferred the
hyperbolic tangent sigmoid function due to its effectiveness
and ease in calculating the derivation of updating input weights
during diagnosis of the CHF. We preferred the back propaga-
tion network due to its advantages of intuitive approaches,
providing evolutionary optimization by both forward and back-
ward pass transfers on learning algorithms.

This system was tested using 5-fold cross validation. In this
method, a whole dataset is randomly divided into 5 parts. It
has been noted that each randomly divided part has an equal
number of uniform distributions on subjects. In every classi-
fication, one of these parts was selected as test data and the
other four parts were combined as a set of training data for
the MLPNN system and the performance achievements of the

system were investigated. SEN, ACC and SPE parameters are
the test characteristics that are the basis of independent testing
and diagnosis of diseases in a general population in medical
diagnostic systems [26,55]. These test characteristics were cal-
culated for 5 times for each part of the dataset and mean values
were calculated for the results. Thus, we provided the use of
all obtained statistical features as test sets except the sets used
for training. Results were tested on all situations of system [57].
High accuracy performance was achieved using extracted sta-
tistical features of the MLPNN classified model. Besides the high
accuracy performance, sensitivity and specificity calcula-
tions that determine the overall success and reliability of system
were achieved, too.

We used a two-stage classification. Both two stages have
the same neural model. In the first stage classification,
the system separates subjects as CHF and no-CHF (the
CAD + Normal). In the second stage classification, subjects were
classified as CAD and Normal. The MLPNN used in the system
has 9 inputs. Nine statistical features for each IMF were given
as inputs to the model.The system has one output that is trig-
gered by the sigmoid function.

The dispersion of performance evaluation values was ob-
tained by using the CHF Database and the NSR Database as
seen in Fig. 7. There were several achievements using this
system; CHF patients were separated from no-CHF subjects with
a classification accuracy rate of 97.83%, a specificity of 93.79%
and a sensitivity of 100% using statistical features from IMF 3
extracted applying HHT to R-R intervals. Corr is highly respon-
sible for reduced R-R intervals in the diagnosis of the CHF as
seen in Table 5.

The dispersion of performance evaluation values that were
obtained by using the Long-Term ST database is seen in Fig. 8.

Fig. 6 – Obtaining frequency-time distribution from IMF 8, the EMD (random segment of IMF8), the HT (random segment of
applying the HT to IMF8), the HSA of IMF8.

Table 3 – Performance of each statistical features for reduced R-R intervals in CHF patients.

Corr Energy SD Max Min Skw Mean Median Mode All

SEN 93.71 89.63 88.51 86.29 80.37 60.37 40.01 34.07 24.81 100.00
SPE 66.21 67.58 57.24 55.86 46.89 51.03 60.02 49.65 42.06 93.79
ACC 84.09 81.92 77.59 75.66 68.67 57.10 46.98 39.51 30.84 97.53

Table 4 – Performance of each statistical features for reduced R-R intervals in CAD patients.

Corr Energy SD Min Max Skw Mean Median Mode All

SEN 90.01 80.00 75.19 67.78 62.96 48.15 35.56 22.96 18.89 97.13
SPE 84.83 93.10 75.17 66.21 56.55 61.38 53.79 57.93 48.97 98.83
ACC 88.19 84.58 75.18 67.23 60.72 52.77 41.93 35.18 29.40 97.53
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There were several achievements; CAD patients were sepa-
rated from other subjects with a classification accuracy
rate of 97.53%, a specificity of 98.83% and a sensitivity of
97.13% using statistical features from IMF 8 extracted by ap-
plying the HHT to R-R intervals. Corr is a highly responsible
feature for reduced R-R intervals in diagnosis of the CAD as
seen in Table 6.

Considering all the results, the HHT can perform the sepa-
ration process for medical diagnosis systems by providing

analysis of non-stationary and non-linear R-R intervals in
various amplitude and frequency scales. Neural network clas-
sification using statistical features extracted from the new
noiseless R-R signals has reached a high success rate of ac-
curacy and sensitivity.This study shows that extracted features
using the HHT can be used as an alternative method to long-
time and short-time HRV measurements [10,35,36,43–45],
Poincaré plot measurements [10,44], wavelet coefficients and
wavelet entropy features [10,45].

Fig. 7 – Performance graph of the CHF diagnostic.

Table 5 – Accuracy, sensitivity, specificity achievements for reduced R-R intervals in CHF patients.

Corr Energy SD Median Max Skw Mean Min Mode All

SEN 93.71 89.63 88.51 86.29 80.37 60.37 40.01 34.07 24.81 100
SPE 66.21 67.58 57.24 55.86 46.89 51.03 60.02 49.65 42.06 93.79
ACC 84.09 81.92 77.59 75.66 68.67 57.10 46.98 39.51 30.84 97.53

Fig. 8 – Performance graph of CAD diagnostic.

Table 6 – Accuracy, sensitivity, specificity achievements for reduced R-R intervals in CAD patients.

Corr SD Energy Median Skw Mean Min Max Mode All

SEN 90.01 80.00 75.19 67.78 62.96 48.15 35.56 22.96 18.89 97.13
SPE 84.83 93.10 75.17 66.21 56.55 61.38 53.79 57.93 48.97 98.83
ACC 88.19 84.58 75.18 67.23 60.72 52.77 41.93 35.18 29.40 97.53
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In this study, we calculated the average PSD of the CHF, no-
CHF, the CAD and Normal patients. It is clear that the frequency-
PSD corresponds to the 3rd and 8th IMFs for the CHF (Fig. 9a),
and the max, min, SD and the power-frequency features for
the CAD diagnosis (Fig. 9b) are on different spectrums.

A comparison of the CHF diagnosis studies in the litera-
ture is seen in Table 7. Extracted features, accuracy, specificity
and sensitivity performance measurements are given. All
studies used the same subject numbers and same databases.

A comparison of the CAD diagnosis studies in the litera-
ture is shown in Table 8. Extracted features using these
databases and the values of Accuracy, Specificity, Sensitivity
performance measurements are also given. Because of the dif-
ferent databases, the number of subjects is given in Table 8.

When IMF groups, extracted by applying the HHT to R-R in-
tervals, were used in designing the MLPNN, the performance
achievements reached an accuracy rate of 97.83%, a specific-
ity rate of 93.79% and a sensitivity rate of 100% using IMF 3
in the diagnosis of the CHF. For non-subject with a diagnosis
of CHF and diagnosis of CAD, the most important risk factor
for the CHF is the diagnosis of CAD. So the early diagnosis of
CAD was achieved with an accuracy rate of 97.53%, a speci-
ficity rate of 98.83% and a sensitivity rate of 97.13% using IMF

8. Thus, in addition to diagnosing the CHF, the early diagno-
sis of CHF by the diagnosis of CAD is provided for other risk
group subjects.

The CHF is one of the leading causes of death and cardiac
dysfunction, and strongly related with the CAD. It is impor-
tant to improve the CHF diagnosis systems to prevent mortality
and morbidity rates and have greater and healthy lifetime ben-
efits. The narrowing of the coronary artery limits the blood
supply in the CAD and this condition usually results to CHF
in the future [58]. It is a good way to diagnose the CAD as early
diagnosis of the CHF, in order to delay the diagnosis of the CAD.
The proposed method suggests high performances for both di-
agnosis of the CHF and the early diagnosis of the CHF by
detecting the CAD.

5. Conclusion

We used three databases that have a wide use in the litera-
ture. New noiseless short-time ECG waveforms were obtained
from the databases and R-R intervals were extracted.The pro-
posed system was used for the diagnosis and early diagnosis

Fig. 9 – Frequency-power spectrum density plots (a) corresponding to 8th IMFs for CHF patients, (b) corresponding to 3rd
IMFs for CAD patients.

Table 7 – Comparison of the CHF classification performance with related studies.

Authors ACC SPE SEN Database Features

Isler and Kuntalp [10] 96.39 94.74 100 CHF-R-R, NSR-R-R HRV measures, Poincaré measures, wavelet entropy
Asyali [35] 93.24 98.08 81.82 CHF-R-R, NSR-R-R Long-term HRV measures
Pecchia et al. [36] 96.40 100 89.70 CHF-R-R, NSR-R-R Short-term HRV measures
This study 97.83 93.79 100 CHF-R-R, NSR-R-R Statistical features of obtained IMFs after HHT

Table 8 – Comparison of CAD classification performance in literatures.

Authors ACC SPE SEN Subjects Features

Lee et al. [43] 85–90 - - 61/82 (Normal/CAD) HRV measures, Arterial wall thickness
Kim et al. [44] 75.00 81.80 72.50 20/64 (Normal/CAD) Frequency-domain measures of HRV, Poincare measures
Giri et al. [45] 96.80 93.70 100 10/15 (Normal/CAD) HRV measures, Wavelet coefficients
This study 97.53 98.83 97.13 25/61 (Normal/CAD) Statistical Features obtained from IMFs
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of CHF. So, the integrated system with the diagnosis of CHF
and CAD used for early diagnosis of CHF was designed. In this
integrated system, the MLPNN was used for classifying the sta-
tistical features of IMF groups extracted applying the HHT.
Accuracy, specificity and sensitivity achievements were used
to evaluate system performance.

Fig. 7 and Fig. 8 depicted an accuracy rate of 97.83%, a speci-
ficity rate of 93.79% and a sensitivity rate of 100% achieved in
the diagnosis of CHF, and an accuracy rate of 97.53%, a speci-
ficity rate of 98.83% and a sensitivity rate of 97.13% achieved
in the diagnosis of CAD. Therefore, in the early diagnosis of
CHF, statistical features of IMFs were extracted applying the
HHT to R-R intervals.

As it is seen in Table 7 and Table 8, the diagnosis of CHF is
achieved with a higher accuracy rate and sensitivity rate than
related works on the same databases. It is hard to compare the
diagnosis accuracy of this study with others because of the dif-
ferent numbers of subjects and different databases.
Nevertheless, the most important feature that makes this study
superior to others is the diagnosis of CAD, as the early diag-
nosis of CHF having high rates of accuracy and sensitivity.This
work provides the integration of two diagnostic systems into
a single system.The analysis time of the diagnosis of both dis-
abilities varies between 2s and 6s. This characteristic of the
processing and decision time makes the proposed HHT-
based analysis method a real-time applicable method in early
the diagnosis of the CHF and diagnosis of the CHF. In future
works, a real-time model would be performed for early diag-
nosis of CHF and the genetic search feature selection algorithms
will be used to enhance, the classification accuracy rate and
leave one out cross validation algorithm will be used to design
a patient-independent system.

Common signal processing methods have an approval over-
view of the temporal and frequency precision of the linear and
stationary signals; the HHT has the ability to extract the char-
acteristic information that indicates the different frequency
and the energy bands of stiffness in the processing of non-
linear and non-stationary signals. R-R interval time series are
the non-linear and non-stationary signals which are less af-
fected type of the ECG by noise and frequently used in cardiac
diseases such as CHF and CAD [10,32]. The most remarkable
advantages of the HHT are providing the frequency value as
a function of the time with an adaptive way and estimating
both the subtle changes and relative suppressions of power at
a specific frequency from the instantaneous frequency of the
R-R intervals time series of time-varying. Extracted IMFs from
the R-R intervals time series are employed the base of the in-
stantaneous frequency and instantaneous bandwidth of the
components by the HT. The proposed method proved to be an
efficient way to diagnose CHF and the early diagnosis of CHF
by detecting CAD using the HHT-based statistical features from
short-term R-R intervals time series.
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