414 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 14, NO. 3, MARCH 2017

Change Detection in Multispectral Landsat Images
Using Multiobjective Evolutionary Algorithm

Amir Yavariabdi and Huseyin Kusetogullari, Member, IEEE

Abstract—1In this letter, we propose a novel method for
unsupervised change detection in multitemporal multispectral
Landsat images using multiobjective evolutionary algorithm
(MOEA). The proposed method minimizes two different objective
functions using MOEA to provide tradeoff between each other.
The objective functions are used for evaluating changed and
unchanged regions of the difference image separately. The differ-
ence image is obtained by using the structural similarity index
measure method, which provides combination of the comparisons
of luminance, contrast, and structure between two images. By
evolving a population of solutions in the MOEA, a set of
Pareto optimal solution is estimated in a single run. To find the
best solution, a Markov random field fusion approach is used.
Experiments on semisynthetic and real-world data sets show the
efficiency and effectiveness of the proposed method.

Index Terms— Change detection, image processing, Landsat

images, multiobjective evolutionary algorithms (MOEAs), remote
sensing.

I. INTRODUCTION

N REMOTE sensing context, change detection is the

process of identifying differences between coregistered
images acquired in the same geographical area at different
times. This is an important research area as the time and
precision of change detection on the land surface allow for
deeper comprehension of the interactions between human
and natural phenomena and can provide guidance in the
management of the use of lands and resources [1]. Satellite
imageries—for instance, synthetic aperture radar (SAR) and
remotely sensed optical (e.g., Landsat)—have long been used
to view and monitor land surface conditions, owing to their
frequency of data collections and spatial resolutions. The SAR
images are obtained using active sensors, which are working
based on detection of the energy reflected from the Earth.
Thus, this imagery is not sensitive to any meteorologic con-
ditions. On the other hand, multispectral satellite images are
acquired via passive optical sensors, and thereby, this remote
sensing technique is sensitive to even very small changes in
atmospheric conditions [2].

In general, change detection methods can be classified into
three main categories: supervised [3], semisupervised [4],
and unsupervised [5], [6] approaches. In the supervised and
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semisupervised approaches, a training set with accurate ground
truth must be used to calculate the transformation function
via a classifier, which will be used to flag each pixel as
changed or unchanged. However, in satellite change detection
context, generating accurate ground truth information is usu-
ally a tedious, difficult, and expensive task. Therefore, many
unsupervised change detection methods have been proposed as
there is no need of training sets. In general, the unsupervised
change detection methods fall into two discrete groups: pixel-
based and object-based change detection. In the pixel-based
approach, an image pixel is used as fundamental unit of
analysis whereas in the object-based approach, first, the object
must be segmented or detected from images, and then its
characteristics, such as shape, texture, topological information,
and spectral response, can be used for further analysis [7].
Choosing appropriate unsupervised change detection approach
is highly dependent on the objectivity of the research as
pixel-based change detection methods are mostly suitable for
low- and medium-resolution satellite images and object-based
change detection methods are appropriate for very high reso-
lution image [7]. Here, we propose a pixel-based unsupervised
change detection method for medium resolution data.

In general, the pixel-based unsupervised change detection
algorithms include two steps: 1) comparison of two images
and 2) image analysis. In the first step, the similarity between
images is computed using an appropriate mathematical model,
such as: image differencing, log-ratio, change vector analysis
(CVA), correlation coefficient (CC), erreur relative globale
adimensionnelle de synthese (ERGAS), and so on. The second
step is used to obtain binary change mask, which can be
achieved by optimization methods [5], [6], thresholding [8],
clustering approach [9], and many others [10]. For instance,
Ghosh et al. [11] propose an unsupervised change detection
technique for multispectral remote sensing images. Initially,
a difference image is generated using the CVA [12]. Then,
the difference image is modeled with Markov random field
(MRF) and the binary change mask is estimated using the
maximum a posteriori probability estimation criterion. The
main drawback of this method is that the CVA similarity
measure is based on pixelwise radiometric comparison, which
makes it highly dependent of a radiometric correction method.
This simply limits the application of their method in Landsat
imaging. Renza er al. [8] propose an unsupervised method
for change detection in multispectral remote sensing data. In
this method, a difference image is obtained via the ERGAS
similarity metric. After that, different thresholding algorithms
are used to generate the final binary change mask and the
best result is achieved using Otsu’s thresholding algorithm.
This similarity metric has a good sensitivity to global spectral
distortion but it is sensitivity to local color distortion [13].
Therefore, this framework may provide poor performance for
Landsat images, especially, when they captured with different
atmospheric conditions. Celik [5] proposes an unsupervised
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change detection on the difference image by using a genetic
algorithm (GA). The difference image is obtained using the
log-ratio operator. The method minimizes a cost function
using GA to generate the final change detection mask. How-
ever, the log-ratio is highly sensitive to a small number of
pixels that have intensity differences between two images.
In general, these algorithms share two common issues such
as: 1) the cost functions are based on weighted sum of
the changed and unchanged objectives and 2) the methods
cannot cope with the phenomenon of atmospheric changes
and/or speckle noise. Note that the first issue may cause
high error detection rate as improvement of one objective
function may cause deterioration for another objective function
during the optimization process; hence, the change detection
methods based on single cost function may not provide optimal
tradeoff between changed and unchanged objective functions.
To solve the second issue in change detection problem for SAR
imaging, which often suffers from speckle noise, pixel-based
multiobjective clustering-based change detection methods have
been proposed [14]. However, in the context of change detec-
tion in Landsat images, these methods cannot be used as they
are not robust to atmospheric conditions (e.g., the presence of
haze, fog, smoke, or thin cloud), which can reduce the contrast
of the observed area and fade the colors in the image.

In this letter, the structural similarity index measure (SSIM)
[15] is used to measure the similarity between two Landsat
images, based on local luminance, contrast, and structure
comparisons. It has been used in various applications, such
as image compression [15], video surveillance [16], object
detection [3], and so on. To the best of our knowledge, the
SSIM has not been used for the purpose of satellite change
detection. The main reason of using the SSIM for change
detection in Landsat images is to make the proposed method
robust to contrast, brightness, and local color distortions
[16] as well as haze and thin cloud. After that, two cost
functions based on the SSIM for changed and unchanged
pixels have been generated. Unlike the other unsupervised
change detection methods, which are using weighted sum of
the objective functions, we iteratively minimize two objective
functions independently and simultaneously using multiob-
jective evolutionary algorithm (MOEA) to obtain a set of
multiple binary change masks with the minimum influence of
atmospheric conditions. More specifically, the MOEA provides
the optimum tradeoff between the objective functions for better
discrimination. Finally, MRF fusion technique [17] is adapted
to optimally fuse the obtained binary masks for finding the
final binary image. The experimental results on both synthetic
with the existence of haze and thin cloud and real data sets
show the effectiveness and robustness of the proposed method
over the state-of-the-art methods.

The rest of this letter is organized as follows. The proposed
method is described in Section II. Section III provides the
experimental results of the proposed method and the state-of-
the-art methods. This letter is concluded in Section IV.

II. PROPOSED CHANGE DETECTION METHOD

Assume X g") and Xén), where n = {1, 2, 3} denotes spec-
tral bands, be two Landsat images with a size of H x W.
The main important objective of this letter is to find binary
change detection image X;, : Q C Z> — {0, 1}, where the
image domain Q = {1,..., H} x {1, ..., W}. By convention,
0 indicates that there is no change for the corresponding pixel
and 1 indicates that there is a change.

In pixelwise change detection problem, obtaining the
optimum binary image is a very challenging task as it has
2H>xW s n possible solutions. In order to obtain the optimal
solution, it is necessary to use an optimization approach. In
this letter, we propose a new unsupervised method in satellite
images using MOEA. In this manner, the change detection
problem can be treated as unsupervised binary classification
task, which may require generation of difference image X;")
beforehand. To this end, the proposed method mainly consist-
ing of three steps.

1) SSIM method is used as a similarity metric to compute
the difference image. The main advantage of the SSIM
operator compared with the frequency-used similarity
metrics, i.e., image differencing, log-ratio, and CC, is
that the existing methods estimate perceived errors to
quantify image differences, while the SSIM method
considers image differences as perceived changes of
structural information.

2) Two mean square error (MSE)-based cost functions are
proposed to quantify changed and unchanged pixels.
Then, the cost functions are separately optimized using
MOEA to generate a set of optimal binary masks.

3) The MREF fusion is used to find the best solution.

A. Landsat Image Similarity Measures via SSIM

In the first step, the difference image must be generated.
When detecting changes in optical images, the common way
of comparing a pair of images is to compute a difference image
using image subtraction. However, when Landsat images are
considered, this technique is error prone as it is not robust to
contrast, brightness, and color differencing changes. Therefore,
we attempt to use SSIM as a difference measure technique,
because it is effective when there are some differences between
two images in intensity s, brightness /, and contrast c. The
SSIM technique uses three components: luminance, contrast,
and structure [15]. The SSIM can be calculated as follows:

X = [0 X e ) e X

where, a, f, and y are the exponents and used to adjust
the influence of each measurement on the final calculation
of X,4. For each channel, X, is measured in the same manner
proposed in [15], with @ = f# =y = 1. In (1), the variable /,
¢, and s can be written as
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where u, o, and oy, x, are the mean, standard deviation, and
cross correlation (covariance) between two images, respec-
tively, and €1, €, and €3 are small positive constants included
to avoid instability. Note that (2) is the normalization step of
the proposed method and is calculated based on normalized
values. Unlike the image differencing, which is measured at
the global level, the SSIM is computed locally. In this letter,
the image statistics (u, o, and o, x,) are computed in the way
proposed in [15]. Here, we use a 15 x 15 circular symmetric
Gaussian weighting function with standard deviation of 1.8
samples. In this way, X illustrates a locally isotropic property.

O-X}n) O'Xén) + €3
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Algorithm 1 Pseudocode of MOEA

1: Initialize the generation number g, population size K,
crossover rate ¢,, mutation rate m,

2: P <« Initialize Binary Population Set

3:0 <« 0

4: while Stopping criteria is not reached do

5: Fork < 1to K/2

6:  Parents < Selection(P)

7. Offspring < use crossover and mutation operators

8

9

Estimate the fitness value of each offspring

. Insert offspring into the Q
10:  End For
11: R« PUQ
12:  Use the ranking and crowding distance operator
13:  Select Pareto solutions and insert them into the P
4. g=g+1
15: end while
16: Output: A set of Pareto solutions and binary images

B. Multiobjective Evolutionary Algorithm

Many optimization problems contain multiple objectives
and it is important to provide tradeoff between all objectives
for obtaining an efficient result. A multiobjective optimization
problem can be described as

minimize F(x) = (f1(x) f2(x)--- fi(x)T (3)

where F(x) has k objective functions and x = [xq, ..., x,]
is the vector of decision variables. To solve this optimiza-
tion problem, one of the popular procedure is to transform
multiobjective optimization problem into a single optimization
function, and then, a single objective optimization algorithm
(e.g., GA) can be used to find the optimal solution. However,
this technique restricts the search space, so that improvement
of one objective may cause deterioration for another objective
during its iteration process. Thus, it may cause wrong deci-
sion making and decreasing accuracy rate. Recently, MOEAs
have become great approaches to resolve multiple objectives
simultaneously to provide the best tradeoff solutions between
multiple objectives [18]. In the change detection context, there
are several objective functions, which must be taken into
account separately in order to find the changed and unchanged
pixels more effectively. To resolve it, two objective functions
(k = 2) are employed independently by using MOEA. Thus,
Pareto optimal solutions are obtained as the best tradeoff
solutions between the objectives. Edgeworth and Pareto [19]
first presented the Pareto optimality approach and the method
was used in [18]. Let a, b € R¥ be two different vectors and
a dominates b (denoted by a < b) ifa, < b forz=1,...,k.
On the other hand, a and b vectors are nondominated if
aj >bjfor j=1,... k.

The purpose of the proposed method is to determine the set
of Pareto optimal solutions. In this letter, we adopt the elitist
nondominated sorting GA known as NSGA-II [20] to resolve
the problem. In the NSGA-II, a number of chromosomes or
individuals are randomly generated with the size of H x W
for each spectral band and inserted in the population P. In
each iteration, two chromosomes are randomly chosen from
the population P as parents by using the binary tournament
selection operator and new individuals are produced by using

the crossover and mutation operators, respectively. Crossover
operates on two chromosomes and creates offspring by com-
bining genes of both chromosomes. Thus, there is a transfer
of genes between the parents, which leads to find better result.
Mutation operator follows crossover and produces random
changes of genes in various offspring to avoid getting stuck
in a local optimum. Obtained new individuals are added in
the new population Q. Then, both the current P and the
new population Q are joined; the resulting population, R,
is ordered according to Pareto solutions of chromosomes by
using ranking operator and a density estimator known as
crowding distance [20]. Thus, nondominated and dominated
solutions are evaluated and the nondominated set of solutions
are inserted into the population P. These steps are repeated
until the termination criteria are satisfied. The pseudocode of
the MOEA is given in Algorithm 1. Each chromosome in each
iteration contains two different fitness values. To solve the
multiobjective change detection problem using the NSGA-II,
it is necessary to estimate fitness values of each chromosome.
To achieve this, two objective functions are used to estimate
fitness values of the candidates and these objective functions
are formulated as follows:

( PJQO H W (
¢V = I )l( W ZZ Sa; (6, (X (x, y))
y=1x=1
| AW 2
i 2 2o N ) |

i y=lx=Il

where i = {0, 1}, C(()") and C{") are two different fitness
functions based on unchanged and changed pixels (Ap and A1)
at the nth spectral band, respectively, and N(gn) and Nl(") are
the number of changed and unchanged pixels on the change
detection mask, respectively. d, (x, y) is the Kronecker delta
function whose value is 1 at V(x,y) € A; and O otherwise
whereas d4,(x,y) is 1 at V(x, y) € Ap and O otherwise.

In (4), the objective functions are computed based on the
MSE of their difference image values (X; € A;) and the mean
of their difference image values. Note that the lower the MSE,
the better the detection result is. The common way to achieve
this is to estimate weighted sum of the MSEs of the unchanged
and changed areas and minimize it. However, this objective
function cannot grantee an optimal solution as indeed giving
the possibility to decrease one of the MSEs and to increase
the other. To solve this problem, we separately calculate
the objective functions (4) for changed and unchanged areas
and optimize them simultaneously using the NSGA-II. The
proposed method provides multioptimum change detection
masks (a set of Pareto optimal solutions). In order to find the
final binary mask, it is necessary to merge all the solutions.
To this end, Chen et al. [17] propose a fusion approach based
on MRF to merge two binary masks, and here, their equation
of the Markov modeling of the conditional distribution of the
pixel label is adapted to fuse m binary masks.

III. EXPERIMENTAL RESULTS

The accuracy of the proposed method is evaluated by quan-
titative and qualitative tests on various semisynthetic images
and two real medium resolution Landsat data sets. In real-
data experiments, the first data set with 1984 x 1451 pixels
shows the water surface of the lake Milh (Iraq) in 1995 and
2003 [Fig. 1(a) and (b)]. For more comprehensive quantitative
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Fig. 1. (a) and (b) Lake Milh data set. (c) Image with artificial haze and
thin cloud. (d) Ground truth change mask for region of interest (blue box).
(e) and (f) Princess Nora Bint Abdul Rahman University images. (g) Changed
and unchanged (green) pixels detected by the proposed method for (e) and (f).

(a) (b) (c) (d)
(e) ® (2

Fig. 2. Example of generated semisynthetic data. (a) Reference image (X1).
(b)-(g) X, images, which cover by increasingly larger levels of haze and thin
clouds.

evaluations, the haze and thin cloud are artificially added to
Fig. 1(b) and it is shown in Fig. 1(c). For this data set, the
ground truth change mask is generated by manually labeling
of region of interest (blue box) and shown in Fig. 1(d). In
addition, the region of interest is considered for conducting
quantitative evaluations. Fig. 1(e) and (f) shows the Princess
Nora Bint Abdul Rahman university in north of Riyadh and
they are captured in 2003 and 2013 with the resolution
of 396 x 392 pixels. Since the changes in land use have
complicated patterns, it is not easy to generate the ground
truth. Therefore, to make the qualitative evaluation easier, the
proposed method is used to obtain changed and unchanged
pixels and then project the pixel information from Fig. 1(g)
into changed regions and green color into unchanged areas.

The proposed method is compared with EM-based [21],
GA-based [5], ERGAS-based [8], and Particle Swarm Opti-
mization (PSO)-GA-based [6] change detection methods. The
proposed method, PSO-GA-based, and ERGAS-based meth-
ods use the images in RGB color space whereas the Expec-
tation Maximization (EM)-based and GA-based methods use
gray-scale images. The EM-based and ERGAS-based methods
do not have any parameter to set. In other two methods, we
use the parameters given in [6]. In the proposed approach,
the NSGA-II is used with the population size of 30, the
crossover rate of 0.8, the mutation rate of 0.01, and the
iteration number of 25000. These parameters are selected
empirically. Besides the qualitative tests, the change detection
accuracies are evaluated using some standardized measures,
including false alarm rate (Pga ), missed detection rate (Pvp),
and total error (Prg) [6].

It is important to evaluate the robustness of the algo-
rithms on various atmospheric conditions, such as thin clouds

TABLE I
QUANTITATIVE RESULTS FOR SEMISYNTHETIC DATA SETS

Data sets from Fig. 2 I

\

‘ L [ L@-0b) | L@-(o) [ M:@-(d) | IV:i(a)-(e) | V:i(@-0 [ VL@-(g) |
EM-based 2.7580 4.6118 5.7812 9.3199 14.0531 18.4795
GA-based 0.9734 2.2525 5.4044 7.5438 12.2617 17.3370

PSO-GA-based 0.1903 0.3213 1.1198 5.7790 9.0519 152318
ERGAS-based 4.07 5.35 10.48 14.59 13.50 20.07
Proposed 0.0305 0.09980 0.2307 1.3922 3.0533 6.0384
TABLE II

QUANTITATIVE RESULTS FOR LAKE MILH DATA SETS

Method [ Lake Milh (Fig. 1 (a)-(b)) [[ Lake Milh (Fig. I (a)-(c)) []

| Pra | Pua | Pre || Pra [ Pua | Pre |
EM-based 3.04 22.49 9.01 3.85 27.67 12.83
GA-based 2.36 7.16 3.87 3.06 9.69 5.50
PSO-GA-based 1.28 2.55 1.71 1.93 2.99 2.08
ERGAS-based 2.50 4.35 1.97 16.22 423 7.76
Proposed 1.09 0.53 0.90 1.52 0.62 1.26

and haze by conducting experiments on semisynthetic data.
To achieve this, an image covered by haze and thin cloud
[see Fig. 2(g)] is processed by a visibility restoration algo-
rithm based on filtering approach [22] to partially or fully
remove haze and thin cloud. In this manner, we generate six
semisynthetic images, which are shown in Fig. 2(a)—(f). In the
change detection algorithms, Fig. 2(a) is considered as Xi,
since it is the result for clear weather, whereas each image
in Fig. 2(b)—(g) is considered as X;. Since there is no land
changed on the observed area, the ground truth of the change
map does not include any changed pixel, so that the Pry4 is
used as a quantitative measurement.

The quantitative results for the data sets which are shown
in Fig. 2 are tabulated in Table I. The results show that the
ERGAS-based and EM-based methods yield the highest rate
of incorrect detections. The EM-based method always detects
the haze and thin cloud region as changed. The ERGAS-based
method shows high sensitivity to local color distortions, and
due to the use of simple and noneffective thresholding algo-
rithm for binarization of the difference image, many pixels are
wrongly marked as changed. The GA-based method provides
the higher accuracy than EM-based and ERGAS-based meth-
ods, because it uses an optimization strategy, but the results
are far from being satisfactory, except for the data with very
low level of haze and thin cloud. The main reason that the
EM-based and GA-based methods detect haze, thin cloud, and
color differences between two images as changed is because
they are based on image differencing. The results of the
PSO-GA method are a good evidence to show that using cross
correlation, which is less sensitive than the image differencing
to intensity variations between two images, can improve the
performance of optimization-based change detection signifi-
cantly. However, this method is robust to a certain amount of
the intensity variations. For instance, Table I shows that the
PSO-GA method can provide high accurate change detection
results for data sets I-III; however, for more sophisticated
atmospheric conditions, the precision and accuracy sharply
decrease. Finally, by comparing the results, we can conclude
that the proposed method provides the best results as the SSIM
operator is strongly robust to intensity variations. In addition,
MOEA provides tradeoff between changed and unchanged
objective functions, which leads to the least Pr4, as shown
in Table II.

To validate our method and to test its robustness to real
environmental change, three data sets are used. For instance,
we use a set of Landsat images showing urban growth [see
Fig. 1(d) and (e)]. The results are shown in Fig. 3. Visually,
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o R ,(e) .

Fig. 3. Change detection results for the Land use data set. (a) EM. (b) GA.
(c) PSO-GA. (d) ERGAS. (e) Proposed.

@ (b ©

we can see that the ERGAS-based method is the least accurate
and effective method among the four as Otsu’s thresholding
gives nonoptimal thresholding value. The EM-based method
provides better result than ERGAS-based method, but it has
still high failure rate. The GA-based method contains many
isolated pixels and it flags the soil reflectance as changed
pixels. These problems are solved using the PSO-GA and the
proposed methods. However, the PSO-GA method has higher
missed detection rate than the proposed method. Even though
the proposed method shows good sensitivity to soil reflectance,
it fails in the places where the soil has very high reflectance.
Moreover, the quantitative results for the region of interest in
the lake Milh data set with and without haze and thin cloud
are tabulated in Table II. Using Fig. 1(a) and (b) shows that
the proposed method obtains the least overall error of 0.90%.
According to the results in Table II for Fig. 1(a)—(c), it is seen
that Pra, Pma, and Prg slightly increase using the proposed
method. On the other hand, the results of the compared
methods show that the haze and thin cloud have large influence
on their performances. As a result, the ERGAS-based and
EM-based methods are not precise. The accuracy of change
detection is slightly improved by using GA-based method
at the cost of computational time. On the other hand, the
PSO-GA and the MOEA provide more precise results while
using less iterations.

The qualitative and quantitative tests show that the
GA-based and the PSO-GA-based methods provide less accu-
rate results as the multiobjective optimization problem is
converted into a single optimization problem. In contrast, the
proposed method obtains the change detection mask more
accurate than the other methods. This is due to the fact that the
proposed method is robust to contrast, brightness, and color
inconsistency changes, so that it has very few isolated pixels
and can correctly detect haze and thin cloud as unchanged.
Despite the advantages of the proposed method, MOEA has
a disadvantage, which is a time-consuming algorithm as the
speed of iterations depends on the size of the input images and
the population size. Thus, this method may suffer for large
resolution images.

IV. CONCLUSION

This letter has proposed a new MOEA-based change detec-
tion method for multispectral Landsat images. The proposed
method uses two different objective functions based on SSIM
operator, which provides combination of the comparisons of
luminance, contrast, and structure between two images. The
objective functions are iteratively minimized independently
and separately using MOEA, which results in a set of optimal
binary masks. Finally, for finding the best binary change
detection mask, an MRF framework is used to optimally fuse
the obtained binary masks. Experimental results on a semi-
synthetic data set with various levels of thin cloud and haze
and two pairs of real Landsat images have demonstrated that
the proposed approach is robust to atmospheric changes and
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achieves the best detection performance than other compared
change detection methods.
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