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The elliptic flow of inclusive and direct photons was measured at mid-rapidity in two centrality classes 
0–20% and 20–40% in Pb–Pb collisions at √

sNN = 2.76 TeV by ALICE. Photons were detected with 
the highly segmented electromagnetic calorimeter PHOS and via conversions in the detector material 
with the e+e− pairs reconstructed in the central tracking system. The results of the two methods 
were combined and the direct-photon elliptic flow was extracted in the transverse momentum range 
0.9  < pT < 6.2 GeV/c. A comparison to RHIC data shows a similar magnitude of the measured direct-
photon elliptic flow. Hydrodynamic and transport model calculations are systematically lower than the 
data, but are found to be compatible.
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1. Introduction

The theory of the strong interaction, Quantum ChromoDynam-
ics (QCD), predicts a transition from ordinary hadronic matter 
to a new state where quarks and gluons are no longer con-
fined to hadrons [1,2]. Lattice calculations predict a chiral and 
deconfinement crossover transitions over the temperature range 
145–163 MeV [1,2], which is accessible in collisions of ultrarela-
tivistic heavy ions. The creation and study of the properties of this 
hot strongly interacting matter – Quark–Gluon Plasma (QGP) – are 
the main objectives of the ALICE experiment.

The hot strongly interacting matter, created in nucleus–nucleus 
collisions, expands, cools and finally transforms to ordinary hadro-
nic matter. To experimentally study the quark matter properties, 
several observables were proposed. Here, we concentrate on study-
ing the development of collective flow using direct photons. Direct 
photons are the photons not originating from hadronic decays but 
produced in electromagnetic interactions. Unlike hadrons, direct 
photons are produced at all stages of the collision. Incoming nu-
clei passing through each other produce direct photons in scatter-
ings of their partonic constituents. In addition, (thermal) photons 
are emitted in the deconfined quark–gluon plasma and hadronic 
matter, characterized by the thermal distributions of partons and 
hadrons, respectively. Since the mean free path of a photon in hot 
matter is much larger than the typical sizes of the created fireball 
[3 ], direct photons escape the collision zone unaffected, delivering 
direct information on the conditions at the production time and 
on the development of collective flow.

⋆ E-mail address: alice -publications @cern .ch.

The observations of a strong azimuthal asymmetry of particle 
production over a wide rapidity range in nucleus–nucleus colli-
sions was one of the key results obtained at RHIC [4–7] and LHC 
[8 –12] energies. It was interpreted as a consequence of collec-
tive expansion – collective flow – of the matter having an initial 
spatial asymmetry, which is more prominent in collisions with 
non-zero impact parameter. To quantify the collective flow, the az-
imuthal distributions of final state particles are expanded in the 
series 1 +2 

∑
vn cos[n(ϕ−#R P )] [13 ], depending on the difference 

between the particle azimuthal angle ϕ and the reaction plane ori-
entation #R P , defined by the impact parameter and beam axis. At 
mid-rapidity the second harmonic v2 (elliptic flow) reflects the ex-
pansion of the almond-like shape of the hot matter created by the 
mutual penetration of the colliding nuclei. Higher harmonics v 3 , 
v4, etc. are sensitive to fluctuations of the initial shape of the cre-
ated hot matter and are typically much smaller than v2, except 
for central collisions, where v2 decreases due to a more symmet-
ric geometry. Collective flow is sensitive to the equation of state 
of hot matter and the amount of shear viscosity. The initial spatial 
asymmetry of the expanding fireball diminishes with time, for any 
equation of state. For strongly interacting matter this asymmetry 
translates into an azimuthal anisotropy in momentum space, while 
for free streaming weakly interacting matter there is no final par-
ticle azimuthal anisotropy.

Hadrons provide the possibility to test with high precision the 
flow pattern of the latest stage of the collision, when the hot mat-
ter decouples into final particles. Complementary to them, direct 
photons provide the possibility to investigate the development of 
flow during the evolution of hot matter. First calculations pre-
dicted that the photon emission rate from the hot quark–gluon 
or hadron matter increases with temperature as ∝ T 2 exp(−Eγ /T )
[14], where Eγ is the photon energy and T is the temperature of 
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the matter. Then, the low transverse momentum (pT ! 4 GeV/c) 
part is controlled by the cooler latest stage, and the high pT part 
(pT " 5 GeV/c) of the spectrum by the hot initial state. However, 
detailed calculations which include the full hydrodynamic evolu-
tion (see e.g. [15]) show that contributions of all stages are com-
parable for all pT regions as a higher temperature of the initial 
stage is compensated by a larger space–time volume and stronger 
radial flow of the later stages. Since the observed direct-photon 
flow is the convolution of all stages of the collision, including the 
contribution from the initial stage when the flow pattern has not 
yet developed, the calculations predict much smaller azimuthal 
anisotropy for thermal photons than for hadrons [16,17].

The first measurement of a direct-photon spectrum in relativis-
tic nucleus–nucleus collisions was presented by the WA9 8  collabo-
ration [18 ], and later also by the PHENIX Collaboration [19 –22], 
and by the ALICE Collaboration [23 ]. The first measurement of 
elliptic flow of direct photons in Au–Au collisions at √

sNN =
200 GeV was performed by the PHENIX Collaboration [24]. Sur-
prisingly, it was found to be close to the flow of hadrons [25]. 
Recent PHENIX results, presenting more precise measurements of 
elliptic and triangular flow extended to lower pT [26], confirmed 
this early result. The discrepancy between experimental results and 
theory predictions triggered a set of theoretical studies, which can 
be split into two classes. The main idea in the first class of mod-
els [27–44] is to increase the emission of direct photons from the 
later stages of the collision and/or suppress emission of the initial 
stage. In the second class of models [45–47], a new azimuthally 
asymmetric source of direct photons is considered like jet-matter 
interactions or synchrotron radiation in the field of colliding nuclei. 
These theoretical efforts considerably reduce the discrepancy, but 
consistent reproduction of both the direct-photon spectra and flow 
is still missing. The measurement of direct-photon flow at higher 
collision energy is important as an independent confirmation of 
the results at lower energy, and could also allow to disentangle 
between different contributions.

In this paper, we present the first measurement of the direct-
photon flow in Pb–Pb collisions at the LHC and compare our find-
ings to RHIC results and to predictions of hydrodynamic as well as 
transport models.

2. Detector setup

The direct photon flow is based on the measurement of the el-
liptic flow of inclusive photons and the estimation of the contribu-
tion of decay photons using the available hadron flow results. Pho-
tons are reconstructed via two independent methods: the Photon 
Conversion Method (PCM) and with the electromagnetic calorime-
ter PHOS.

In the conversion method, the electron and positron tracks from 
photon conversions are measured with the Inner Tracking System 
(ITS) and/or the Time Projection Chamber (TPC). The ITS [48 ] con-
sists of two layers of Silicon Pixel Detectors (SPD) positioned at 
radial distances of 3 .9 cm and 7.6 cm, two layers of Silicon Drift 
Detectors (SDD) at 15.0 cm and 23 .9 cm, and two layers of Silicon 
Strip Detectors (SSD) at 3 8 .0 cm and 43 .0 cm. The two innermost 
layers cover a pseudorapidity range of |η| < 2 and |η| < 1.4, re-
spectively. The TPC [49 ] is a large (8 5 m3 ) cylindrical drift detector 
filled with a Ne–CO2–N2 (8 5.7/9 .5/4.8 %) gas mixture. It covers the 
pseudorapidity range |η| < 0.9 over the full azimuthal angle with 
a maximum track length of 159  reconstructed space points. With 
the solenoidal magnetic field of B = 0.5 T, electron and positron 
tracks can be reconstructed down to pT ≈ 50 MeV/c. The TPC pro-
vides particle identification via the measurement of the specific 
energy loss (dE/dx) with a resolution of 5.2% in pp collisions and 
6.5% in central Pb–Pb collisions [50]. The ITS and the TPC were 

aligned with respect to each other to the level of less than 100 µm
using cosmic-ray and pp collision data [51]. Particle identification 
is also provided by the Time-of-Flight (TOF) detector [52] located 
at a radial distance of 3 70 < r < 3 9 9 cm. This detector consists of 
Multigap Resistive Plate Chambers (MRPC) and provides timing in-
formation with an intrinsic resolution of 50 ps.

PHOS [53 ] is an electromagnetic calorimeter which consists of 
three modules installed at a radial distance of 4.6 m from the 
interaction point. It subtends 260◦ < ϕ < 3 20◦ in azimuth and 
|η| < 0.12 in pseudorapidity. Each module consists of 3 58 4 de-
tector cells arranged in a matrix of 64 × 56 lead tungstate crys-
tals each of size 2.2 × 2.2 × 18 cm3 . The signal from each cell 
is measured by an avalanche photodiode (APD) associated with a 
low-noise charge-sensitive preamplifier. To increase the light yield, 
reduce electronic noise, and improve energy resolution, the APDs 
and preamplifiers are cooled to a temperature of −25 ◦C. The re-
sulting energy resolution is σE/E = (1.8 %/E) ⊕ (3 .3 %/

√
E) ⊕ 1.1%, 

where E is in units of GeV. The energy deposition in each PHOS 
cell is calibrated in pp collisions by aligning the π0 peak position 
in the two-photon invariant mass distribution.

For the minimum bias trigger in the Pb–Pb run and event plane 
orientation calculation, two scintillator array detectors (V0–A and 
V0–C) [54] are used, which subtend 2.8  < η < 5.1 and −3 .7 <
η < −1.7, respectively. Each of the V0 arrays consists of 3 2 chan-
nels and is segmented in four rings in the radial direction, and 
each ring is divided into eight sectors in the azimuthal direction. 
The sum of the signal amplitudes of the V0–A and V0–C detectors 
serves as a measure of centrality in the Pb–Pb collisions.

3. Data analysis

This analysis is based on data recorded by the ALICE experiment 
in the first LHC heavy-ion run in the fall of 2010. The detector 
readout was triggered by the minimum bias interaction trigger 
based on signals from the V0–A, V0–C, and SPD detectors. The 
efficiency for triggering on a Pb–Pb hadronic interaction ranged be-
tween 9 8 .4% and 9 9 .7%. The events are divided into the central and 
semi-central centrality classes 0–20% and 20–40%, respectively, ac-
cording to the V0–A and V0–C summed amplitudes [55]. To ensure 
a uniform track acceptance in pseudorapidity η, only events with a 
primary vertex within ± 10 cm from the nominal interaction point 
along the beam line (z-direction) are used. After offline event se-
lection, 13 .6 × 106 events are available for the PCM analysis and 
18 .8  × 106 events for the PHOS analysis.

The direct-photon elliptic flow is extracted on a statistical ba-
sis by subtracting the elliptic flow of photons from hadron decays 
from the inclusive photon elliptic flow. We assume that in each 
bin of the photon transverse momentum the measured inclusive 
photon flow can be decomposed as

vγ ,inc
2 = Nγ ,dir

Nγ ,inc
vγ ,dir

2 + Nγ ,dec

Nγ ,inc
vγ ,dec

2 , (1)

where Nγ ,inc = Nγ ,dir + Nγ ,dec is the inclusive photon yield which 
can be decomposed into the contributions of direct (Nγ ,dir) and 
decay (Nγ ,dec) photons. The vγ ,inc

2 , vγ ,dir
2 and vγ ,dec

2 are the cor-
responding photon flows. It is convenient to express direct-photon 
flow in terms of the ratio Rγ = Nγ ,inc/Nγ ,dec, the inclusive photon 
flow vγ ,inc

2 , and the decay photon flow vγ ,dec
2 :

vγ ,dir
2 = vγ ,inc

2 Rγ − vγ ,dec
2

Rγ −1
. (2)

The ratio Rγ was measured in the same dataset in [23 ], whereas 
vγ ,dec

2 is calculated with a simulation of photons from decays 
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which is also known as cocktail simulation. The PCM and PHOS 
measurements of inclusive photon flow are performed indepen-
dently. They are then combined and used with the combined ratio 
Rγ as well as the calculated decay photon flow.

The photon elliptic flow v2 is calculated with the Scalar Prod-
uct (SP) method, which is a two-particle correlation method [56], 
using a pseudorapidity gap of |(η| > 0.9 between the photon and 
the reference flow particles. The applied gap reduces correlations 
not related to the event plane #n , such as the ones due to reso-
nance decays and jets, known as non-flow effects. The SP method 
uses the Q -vector, computed from a set of reference flow particles 
(RFP) defined as:

Q⃗ n =
∑

i∈RFP

wie
inϕi , (3 )

where ϕi is the azimuthal angle of the i-th RFP, n is the order of 
the harmonic and wi is a weight applied for every RFP. The RFPs 
are taken from the V0–A and V0–C detectors. Since these detectors 
do not provide tracking information, we sum over the V0–A/V0–C 
cells, while the amplitudes of the signal from each cell, which are 
proportional to the number of particles that cause a hit, are used 
as a weight wi . The non-uniformity of the detector azimuthal effi-
ciency is taken into account by applying the inverse of the event-
averaged signal as a weight for each of the V0 segments, together 
with a recentering procedure [50,57]. More specifically, the ellip-
tic flow v2 is calculated using the unit flow vector u⃗2 = ei2ϕ built 
from reconstructed photons

v2 =

√√√√√
〈〈

u⃗2 · Q⃗ A∗
2

MA

〉〉〈〈
u⃗2 · Q⃗ C∗

2
MC

〉〉

〈 Q⃗ A
2

MA
· Q⃗ C∗

2
MC

〉 , (4)

where the two pairs of brackets in the numerator indicate an av-
erage over all photons and over all events; MA and MC are the 
estimates of multiplicity from the V0–A and V0–C detectors, re-
spectively; and Q⃗ A∗

2 , Q⃗ C∗
2 are the complex conjugates of the flow 

vector calculated in sub-event A and C, respectively.
In the PCM analysis, photons converting into e+e− pairs are 

reconstructed with an algorithm which searches for displaced ver-
tices with two oppositely charged daughter tracks. Only good 
quality TPC tracks with a transverse momentum above 50 MeV/c
and a pseudorapidity of |η| < 0.9 are considered. The vertex 
finding algorithm uses the Kalman filter technique for the de-
cay/conversion point and four-momentum determination of the 
neutral parent particle (V 0) [58 ]. Further selection is performed 
on the level of the reconstructed V 0. Only V 0s with a con-
version points at radii between 5 < R < 18 0 cm are accepted 
such that the π0 and η-meson Dalitz decays are rejected and 
to ensure a good coverage by the tracking detectors of the con-
version daughters. To identify an e+e− pair, the specific energy 
loss (dE/dx) in the TPC [50] of both daughters is used. The trans-
verse momentum component qT of the electron momentum, pe , 
with respect to the V 0 momentum-vector is restricted to be qT <

0.05
√

1 − (α/0.9 5)2 GeV/c, where α is the energy asymmetry of 
the conversion daughters. Random associations of electrons and 
positrons are further reduced by selecting V 0s with cos(θ) > 0.8 5, 
where θ is the pointing angle, which is the angle between the 
momentum-vector of the e+e− pair and the vector that connects 
the primary vertex and the conversion point. Based on the invari-
ant mass of the e+e− pair and the pointing angle of the V 0 to 
the primary vertex, the vertex finder calculates a χ2 value which 
reflects the level of consistency with the hypothesis that the V 0

Table 1
Summary of the relative systematic uncertainties (in %) of the inclusive photon el-
liptic flow in the PCM and PHOS analysis, and of the decay photon simulation. All 
contributions are expected to be correlated in pT with the magnitude of the relative 
uncertainty varying point-by-point.

Centrality 0–20% 20–40%

pT (GeV/c) 2.0 5.0 2.0 5.0

PCM
Photon selection 2.4 4.2 2.1 4.0
Energy resolution 1.0 1.0 1.0 1.0
Efficiency 3 3 1.9 1.9

Total 4.0 5.3 3 .0 4.5

PHOS
Efficiency & contamination 3 .0 3 .0 0.7 0.7
Event plane flatness 2.0 2.0 1.4 1.4

Total 3 .5 3 .5 1.6 1.6

Decay photon calculation
Parameterization of vπ

2 1.3 3 .6 0.8 2.2
η/π0 normalization 1.7 3 .2 1.7 2.4

Total 2.2 4.8 1.9 3 .3

comes from a photon originating from the primary vertex. A selec-
tion based on this χ2 value is used to further reduce contamina-
tion in the photon sample. The main sources of background that 
remain after these selection criteria are V0s reconstructed from 
π ± e∓ , π ± π∓ , π ± K ∓ and e± K ∓ pairs, which is important to take 
into account as shown in [59 ]. The elliptic flow of this background 
is subtracted using a side-band method approach. In this method, 
the dE/dx information of both conversion daughters is combined 
into a 1-dimensional quantity. The signal is a peaked distribution 
and the side-bands are dominated by background sources. The v2
of the side-bands is measured and subtracted from the main signal 
region using the purity of the photon sample, which is obtained 
by fitting Monte Carlo templates to the data. The correction to the 
measured inclusive photon flow is of the order of 5% for central 
and 2.5% for semi-central collisions, respectively.

The systematic uncertainties of the inclusive photon flow mea-
sured with PCM are summarized in Table 1. The uncertainties 
related to the photon selection (|η|, R , min pT, qT, χ2/ndf and 
cos(θ)) are obtained by varying the selection criteria, and the sys-
tematic uncertainties related to the contamination of the photon 
sample are quantified by the uncertainty on the background flow 
subtraction. The energy resolution uncertainties, which are due to 
detector resolution effects and bremsstrahlung of electrons, are 
estimated by comparing vγ ,inc

2 distributions as a function of the 
reconstructed and true pT using MC simulations. The uncertainties 
related to the variation of reconstruction efficiency in- and out-
of-plane are calculated from studying the photon reconstruction 
efficiency as a function of the track multiplicity. For most of these 
sources only a small dependence on pT and collision centrality is 
observed.

In the PHOS analysis, the same photon selection criteria are ap-
plied as in the direct-photon spectra analysis [23 ]. Cells with a 
common edge with another cell that are both above the energy 
threshold of 25 MeV are combined into clusters which are used as 
photon candidates. To estimate the photon energy, the energies of 
all cells or only those with centers within a radius Rcore = 3 .5 cm
from the cluster center of gravity are summed. Compared to the 
full cluster energy, the core energy is less sensitive to overlaps with 
low-energy clusters in a high multiplicity environment, and is well 
reproduced by GEANT3  Monte Carlo simulations [23 ]. The full en-
ergy is used for the systematic uncertainty estimate. The contribu-
tion of hadronic clusters is reduced by requiring Ecluster > 0.3 GeV, 
Ncells > 2 and by accepting only clusters above a minimum lat-
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Fig. 1. Comparison of the measured inclusive photon flow (vγ ,inc
2 ) to the individual PCM and PHOS measurements (vγ ,ind

2 ) in the 0–20% (left) and 20–40% (right) centrality 
classes. The individual results are divided by the combined vγ ,inc

2 . The vertical bars on each data point indicate the statistical uncertainties and the boxes indicate the 
systematic uncertainties.

eral cluster dispersion [60]. The latter selection rejects rare events 
when hadrons punch through the crystal and hadronically inter-
act with APD, producing a large signal in one cell of a cluster, 
not proportional to the energy deposition. In addition to these 
cuts, we also apply a pT-dependent dispersion cut and perform 
a charged particle veto (CPV). The CPV removes clusters based on 
the minimal distance between the PHOS cluster position and the 
position of extrapolated charged tracks on the PHOS surface, and 
is used to suppress hadron contribution [60]. Both dispersion and 
CPV cuts are tuned using pp collision data to provide the photon 
reconstruction and identification efficiency at the level of 9 6–9 9 %. 
Measurements with different combinations of dispersion and CPV 
cuts are used for the estimate of systematic uncertainties. Possi-
ble pileup contribution from other bunch crossings is removed by 
a loose cut on the cluster arrival time |t| < 150 ns, which is small 
compared to a minimum time between bunch crossings of 525 ns.

To estimate the reconstruction and identification efficiencies 
and correction for energy smearing with their possible depen-
dence on the angle with respect to the event plane, we embedded 
simulated photon clusters into real data events and applied the 
standard reconstruction procedure. PHOS properties (energy and 
position resolutions, residual de-calibration, absolute calibration, 
non-linear energy response) are tuned in the simulation to re-
produce the pT-dependence of the π0 peak position and width 
[60]. The correction for the event plane dependence of the recon-
struction and identification efficiencies, which comes as additive 
to the observed photon flow, is less than 10−3 both in central and 
mid-central collisions and is comparable to the statistical uncer-
tainties of the embedding procedure. The correction due to the 
energy smearing, is estimated to be 4% and 1% for central and 
semi-central collisions, respectively. The contamination of the pho-
ton sample measured with PHOS originates mainly from π ± and 
p̄, n̄ annihilation, with other contributions being much smaller. The 
application of the dispersion and CPV cuts reduces the overall con-
tamination at pT ≈ 1.5 GeV/c from about 15% to 2–3 % and down to 
1–2% at pT ∼ 3 –4 GeV/c. To estimate and subtract the hadron con-
tribution, the PHOS response matrices are constructed for π ± , K, p 
and p̄ using real data or Monte Carlo simulations and convoluted 
with the measured spectra, flow and relative yields of hadrons.

Systematic uncertainties of the inclusive photon flow measured 
with PHOS are summarized in Table 1. They can be split into 
two groups: contributions related to the contamination and de-
pendence of reconstruction, identification and smearing efficiency 
on the angle with respect to the event plane, and uncertainties re-
lated to the flatness of the event plane calculation, the event plane 
resolution and the contribution of non-flow effects. Uncertainties 
of the first group are estimated by comparing the fully corrected 
photon flow measured with different sets of identification criteria 
and with full and core energy. Uncertainties of the second group 
are estimated by comparing inclusive photon flows measured sep-
arately with the V0–A and V0–C detectors. Note that because of 
the limited azimuthal acceptance, PHOS is much more sensitive to 
the non-flatness of the event plane distribution compared to PCM.

In the combination of the inclusive photon v2 results from PCM 
and PHOS, both measurements are treated as independent. Possi-
ble correlations due to the use of the same V0A and V0C event 
plane vectors are found to be negligible. To take into account 
correlations of the individual measurements in bins of transverse 
momentum, we describe the measured inclusive photon flows as 
vectors v⃗γ ,inc,PCM

2 , v⃗γ ,inc,PHOS
2 , where the vector components corre-

spond to the measured pT bins, and the correlations of the total 
uncertainties are described by covariance matrices V v2,PCM and 
V v2,PHOS, respectively. The elements of the covariance matrix are 
calculated assuming uncorrelated statistical uncertainties and fully 
correlated (ρ = 1) systematic uncertainties; V ij = V stat,i j + V syst,i j , 
where V syst,i j = ρσsyst,iσsyst, j , for pT bin i and j. Then, the com-
bined inclusive photon flow is the vector

v⃗γ ,inc
2 = (V −1

v2,PCM + V −1
v2,PHOS)

−1

× (V −1
v2,PCM v⃗γ ,inc,PCM

2 + V −1
v2,PHOS v⃗γ ,inc,PHOS

2 ). (5)

The inclusive photon v2 measured with PCM and PHOS are com-
pared in Fig. 1, which shows the ratio of the individual values to 
the combined flow. The PCM and PHOS measurements are found 
to be consistent with each other with p-values of 0.9 3  and 0.43  
for the centrality classes 0–20% and 20–40%, respectively.

The decay photon flow is estimated using a cocktail simula-
tion. Decays that contribute more than 1% of the total decay pho-
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Fig. 2. Elliptic flow of decay photons from π0, η, ω, and the total cocktail simulation as a function of transverse momentum in the 0–20% (left) and 20–40% (right) centrality 
classes. The band represents the total uncertainty of the total cocktail simulation.

ton yield are taken into account: π0 → 2γ , η → 2γ , ω → γπ0, 
K 0

s → 2π0 → 4γ . Other contributions are negligible compared to 
the systematic uncertainties of the cocktail. In decays of η and ω
mesons only photons produced directly in decays are accounted, 
while those coming from daughter π0 decays are already ac-
counted in π0 contribution. The K 0

s decay does not contribute sig-
nificantly to the photon sample measured with the PCM approach. 
Therefore, we correct the PHOS measurement for this contribu-
tion before combining the PHOS and PCM measurements. Here we 
use the same approach as in the direct-photon spectrum analysis 
[23 ], but this time the simulation of the elliptic flow is added. To 
estimate the elliptic flow of neutral pions, a parametrization has 
been made of the charged pion flow measured under the same 
conditions, i.e., charged pions measured in the TPC and reference 
particles in the V0–A and V0–C detectors [61,62] are used. To es-
timate the contribution of η and ω mesons, the measured elliptic 
flow of charged and neutral kaons [61] is scaled, assuming scaling 
with the transverse kinetic energy K ET = mT − m. The compar-
ison of different contributions and overall decay photon flow is 
shown in Fig. 2. The v2 contributions were added with weights, 
proportional to the relative decay photon yield of a meson in total 
decay yield [23 ]. The width of the colored band represents the sys-
tematic uncertainties of the decay photon elliptic flow vγ ,dec

2 . The 
decay photon flow is mainly determined by the π0 flow, while 
other contributions make relatively small corrections: the η and 
ω contributions slightly reduce the decay photon elliptic flow at 
pT < 2 GeV/c and increase it compared to the π0 contribution at 
higher pT. The systematic uncertainties of the decay photon flow 
are summarized in Table 1. The largest uncertainties come from 
the parametrization of the charged pion elliptic flow and from the 
relative yield η/π0.

4. Results

The vγ ,inc
2 measured in two centrality classes are shown in 

Fig. 3 . The elliptic flow coefficients of inclusive photons and decay 
photons are very similar over the full range 0.9  < pT < 6.2 GeV/c. 
As the fraction of direct photon over the inclusive photon yield is 
relatively small, ∼ 10% in our pT range [23 ], the collective flow of 
inclusive photons is dominated by the decay photon flow. In mod-
els based on relativistic hydrodynamics the medium is assumed 

to be in or close to local thermal equilibrium. An equation of 
state is used to relate thermodynamic quantities like temperature, 
energy density, and pressure. Photon production is modeled by 
folding the space–time evolution of a collision with temperature-
dependent photon production rates in the QGP and the hadron 
gas. Another approach is taken, e.g., in the PHSD transport model 
in which the QGP degrees of freedom are modeled as massive 
strongly-interacting quasi-particles [63 ]. For both classes of models 
the development of a strong early elliptic flow, necessary to re-
produce the observed direct-photon flow, gives rise to a large pion 
elliptic flow at freeze-out and therefore to a large inclusive pho-
ton elliptic flow. It is therefore an important test to check whether 
a model can describe both the inclusive and the direct-photon el-
liptic flow. The prediction of the hydrodynamic model described 
in [64] for the inclusive photon v2 in the range 1 < pT < 3 GeV/c
is about 40% above the data, though the magnitude of the elliptic 
flow of unidentified hadrons is reproduced within 10–20% accu-
racy in this pT range [65]. The PHSD model [63 ] also predicts an 
∼ 40% higher inclusive photon flow, even though it reproduces the 
unidentified hadron flow well.

The direct-photon v2 is calculated from the combined PCM and 
PHOS photon excess Rγ [23 ], the combined inclusive v2, and the 
calculated decay photon v2. In the propagation of uncertainties, 
the relatively small significance of the photon excess of about 1–3  
standard deviations (depending on the centrality class and pT in-
terval) requires special attention. This is illustrated for a selected 
pT interval in the left panel of Fig. 4 which shows the obtained 
vγ ,dir

2 and its uncertainty as a function of the photon excess Rγ . 
The Gaussian function in this panel represents the measured value 
of Rγ in this pT interval (dashed line) and its 1σ total uncertainty 
(dark blue shaded area). For Rγ ! 1.05 one loses the sensitivity to 
vγ ,dir

2 as the uncertainties, indicated by the red shaded band, in-
crease drastically. With the current uncertainties on Rγ we cannot 
rule out completely that Rγ ! 1.05.

We address the limited significance of the direct-photon excess 
by employing a Bayesian approach. The parameters Rγ ,t, vγ ,inc,t

2 , 
vγ ,dec,t

2 denoting the true values carry the index “t” and the mea-

sured quantities Rγ ,m, vγ ,dec,m
2 , vγ ,dec,m

2 the index “m”. Note that 
Rγ ,t is restricted to its physically allowed range (Rγ ,t ≥ 1), while 
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Fig. 3. Elliptic flow of inclusive photons and decay photons, compared to hydrodynamic [3 1] and transport PHSD [3 0] model predictions in the 0–20% (left) and 20–40% 
(right) centrality classes. The vertical bars on each data point indicate the statistical uncertainties and the boxes indicate the sizes of the total uncertainties.

Fig. 4. Left: Central value (solid red line) and uncertainty of the direct-photon v2 for a selected pT interval. The upper and lower edges of the red shaded area correspond to 
the total uncertainty of vγ ,dir

2 as obtained from linear Gaussian propagation of the uncertainties σ (vγ ,inc
2 ) and σ (vγ ,dec

2 ). The Gaussian (with arbitrary normalization) reflects 
the measured value of Rγ in this pT interval (blue dashed line) and its ± 1σ uncertainty (dark-blue shaded interval). Right: Posterior distribution of the true value of vγ ,dir

2
for the same interval in the Bayesian approach. Note that the distribution has a non-Gaussian shape, implying that the ± 2σ interval typically corresponds to a probability of 
less than 9 5.45% as would be the case for a Gaussian.

the measured value Rγ ,m can fluctuate below unity. The posterior 
distribution of the true parameters can be written as

P (ϑ⃗ |m⃗) ∝ P (m⃗|ϑ⃗)π(ϑ⃗),

π(ϑ⃗) ≡ π(R⃗γ ,t) = /(Rγ ,t,1 −1, ..., Rγ ,t,n −1),
(6)

where in m⃗ = (R⃗γ ,m, ⃗vγ ,inc,m
2 , ⃗vγ ,dec,m

2 ), ϑ⃗ = (R⃗γ ,t, ⃗v
γ ,inc,t
2 , ⃗vγ ,dec,t

2 ). 
Here we use the notation introduced in Eq. (5): vectors represent 
sets of measurements in different pT bins and n is the number 
of these bins. The function π(R⃗γ ,t) encodes the prior knowledge 
about Rγ . The multivariate Heaviside / function corresponds to a 
constant (improper) prior for Rγ ,t ≥ 1. The probability to observe 
a certain set of measured values given the true values is modeled 
with multivariate Gaussians G(x⃗; µ⃗, V ) (where µ⃗ is the vector of 
mean values and V is the covariance matrix):

P (m⃗|ϑ⃗) =
∏

x=Rγ , vγ ,inc
2 , vγ ,dec

2

G(x⃗m; x⃗t, V x). (7)

By sampling the posterior distribution P (ϑ⃗ |m⃗), we obtain triplets 
(Rγ , vγ ,inc

2 , vγ ,dec
2 ) for each pT bin from which we calculate vγ ,dir

2
according to Eq. (2). An example of the resulting distribution for 
vγ ,dir

2 is shown in Fig. 4 (right panel). The medians of the vγ ,dir
2

distributions are taken as central values. The lower and upper 
edges of the error bars correspond to values of vdir

2 at which the 
integral of the v2 distribution is 15.8 7% and 8 4.13 % of the total in-
tegral. In case of a Gaussian distribution this corresponds to 1σ
uncertainties.

The results for the direct-photon elliptic flow for the two cen-
trality classes, 0–20% and 20–40%, are shown in Fig. 5. The total 
uncertainties, reflecting the Bayesian posterior distributions, are 
shown as boxes, and the error bars represent statistical uncer-
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Fig. 5. Elliptic flow of direct photons compared with PHENIX results [26] for the 0–20% (left) and 20–40% (right) centrality classes. The vertical bars on each data point 
indicate the statistical uncertainties and the boxes the total uncertainty.

Fig. 6. Elliptic flow of direct photons compared to model calculations in the 0–20% (left) and 20–40% (right) centrality classes. The vertical bars on each data point indicate 
the statistical uncertainties and the boxes the total uncertainty.

tainties. The correlation of v2,dir points for different pT bins as 
quantified by the correlation matrix is strong at low pT ! 2 GeV/c
(correlation coefficients typically in the range 0.6–0.75) whereas 
the uncertainties at high pT are dominated by statistical uncer-
tainties. We compare our results to measurements made at RHIC 
energies by the PHENIX collaboration [26]. The inclusive photon v2

was measured by PHENIX through the reconstruction of e+e− pairs 
from photon conversions and with an electromagnetic calorime-
ter. The direct-photon elliptic flow in Au–Au collisions at RHIC and 
in Pb–Pb collisions at the LHC are found to be compatible within 
uncertainties. A simple explanation of the large and similar direct-
photon elliptic flow for pT ! 2 GeV/c at RHIC and the LHC is that 
the bulk of the thermal direct photons is produced late at temper-
atures close to the transition temperature Tc. This is interesting as 
naïvely one would expect the T 2 temperature dependence of the 

photon emission rate to make the early hot QGP phase after ther-
malization also the brightest phase.

Fig. 6 compares the measured direct-photon elliptic flow vγ ,dir
2

to the estimated decay photon elliptic flow vγ ,dec
2 , marked as cock-

tail, and to the predictions of several theoretical models. Similarly 
to measurements at RHIC energies [24], we find that the direct and 
decay photon elliptic flow are similar. We compare our measure-
ments to state-of-the-art hydrodynamic model calculations [3 1,66]
and the PHSD transport model [63 ]. The measured direct-photon 
elliptic flow is systematically higher than theoretical predictions, 
but is still compatible.

In order to quantify the deviation of the direct-photon v2 mea-
surement from a certain hypothesis with a frequentist p-value or, 
equivalently, the corresponding number of standard deviations, we 
use a Bayesian-inspired method [67]. In this approach, the likeli-
hood L(v⃗γ ,inc,m

2 |v⃗γ ,dir,t
2 ) serves as a test statistic and is obtained by 
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integrating over the nuisance parameters v⃗γ ,dec,t
2 and R⃗γ ,t using 

their Bayesian posterior distributions as weights. We focus on the 
interval 0.9  < pT < 2.1 GeV/c in which the contribution of ther-
mal photons is expected to be important. The significance of the 
deviation from the hypothesis vγ ,dir,t

2 = 0 for individual pT bins 
is in the range 1.8 –2.1σ for the 0–20% class and 0.9 –1.5σ for the 
20–40% class. We also go a step further and estimate the combined 
significance of the deviation from the hypothesis vγ ,dir

2 ≡ 0 for this 
pT interval. This tests in addition how well the shape of vγ ,inc,m

2

as a function of pT agrees with vγ ,dec,m
2 /Rγ , i.e., with the expec-

tation for vγ ,dir
2 ≡ 0. We estimate the covariance matrix describing 

the correlation by characterizing the different sources of system-
atic uncertainties of Rγ , the inclusive, and the decay photon flow 
as either fully uncorrelated or fully correlated in pT. Varying the 
assumptions about the correlation of the data points we obtain 
significances of typically less than 1σ for both centrality classes. 
While the applied method is essential for a meaningful comparison 
of the vγ ,dir

2 data with different model predictions, the methods to 
estimate the covariance matrix can be improved in future analyses.

5. Conclusions

In summary, we report the first measurement of elliptic flow of 
inclusive and direct photons as a function of transverse momen-
tum in the range 0.9  < pT < 6.2 GeV/c for central and semi-central 
Pb–Pb collisions at √sNN = 2.76 TeV. The elliptic flow of inclusive 
photons was measured with the scalar product method, indepen-
dently in the electromagnetic calorimeter PHOS and with the pho-
ton conversion method where the reference particles in both cases 
were measured by the V0–A and V0–C detectors. The combined 
inclusive photon vγ ,inc

2 , together with the calculated decay photon 
vγ ,dec

2 and the previously measured Rγ are used to calculate the 
elliptic flow of direct photons. The measured direct-photon flow 
vγ ,dir

2 appears to be close to the decay photon flow for both cen-
trality classes, similar to observations at lower collision energies. 
Moreover, the measured vγ ,dir

2 is similar to the measurements by 
the PHENIX collaboration at RHIC. The considered hydrodynamic 
and transport models predict a larger inclusive photon elliptic flow 
(by approximately 40%) and a smaller direct-photon elliptic flow 
than observed. With current uncertainties, however, these mod-
els are consistent with the presented direct-photon elliptic flow 
data. Future measurements using a larger statistics dataset will 
greatly increase the precision of this measurement and allow us to 
extend the measurement to higher pT, since the statistical uncer-
tainty is dominating the total uncertainty for pT > 2.0 GeV/c and 
pT > 3 .0 GeV/c for the PHOS and PCM inclusive photon flow mea-
surement, respectively. In addition, a larger statistics dataset will 
also help to constrain the systematic uncertainties on the inclusive 
and decay photon flow, as well as the measurement of Rγ over the 
whole pT range. A further reduction of the systematic uncertainties 
is expected from improved detector knowledge. For instance, in 
case of PCM the largest systematic uncertainty in the measurement 
of Rγ is related to modeling the material in which the photons 
convert. Calibrating regions of the detector with less well known 
material budget based on regions with very well known material 
might significantly reduce the overall material budget uncertainty. 
The Rγ measurement can be improved further by measuring neu-
tral pion and eta meson spectra in a combined PCM-calorimeter 
approach in which one decay photon is measured through conver-
sion and the other with a calorimeter.
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