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Abstract

Objectives: The present study aimed to investigate the effects of acute hypoxia

exposure following prenatal stress on the novelty-seeking behavior and hippo-

campus of adolescent rats.

Methods: The offspring were divided into prenatal stress (PS) and non-stress

(NS) groups. Both groups were exposed to hypoxia on postnatal day 10 (P10)

while control groups were undisturbed. Novel object recognition task was per-

formed in each group. Next, brains were collected to examine hippocampus

via immunohistochemical and biochemical studies on postnatal day 35 (P35).

Results: PS decreased novelty discrimination and synaptophysin (SYN)

expressions in both CA1 and CA3 of the hypoxia group prominently

(p < 0.05). Nestin-expressing cells were reduced while vascular endothelial

growth factor (VEGF) expression was enhanced in the subgranular zone (SGZ)

of PS-hypoxia group (p < 0.05). VEGF enhancement triggered angiogenesis in

the CA1 and CA3 significantly (p < 0.05). PS also increased thiobarbituric acid

reactive substances (TBARS) levels in the hypoxia group as a result of oxida-

tive stress (p < 0.05).

Conclusion: These findings demonstrated that PS exacerbates neu-

rodevelopmental deficits in the hippocampus of acute hypoxia-induced

offspring in adolescence.
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1 | INTRODUCTION

Early life stress usually causes neurodevelopmental, psy-
chiatric, cardiovascular, and intestinal problems in long
term (Charil et al., 2010; Weinstock, 2008). Stress during
pregnancy affects fetal development by increasing the

activity of the hypothalamic–pituitary–adrenal (HPA)
(O’donnell et al., 2009). Dysregulation of the HPA axis
causes glucocorticoids to be transferred through placenta
and accumulate in the developing brain (Huizink
et al., 2000). Prenatal stress (PS) especially affects the hip-
pocampus which is crucial for emotional behaviors,
learning, and memory (Weinstock, 2008). Therefore, PS
may lead to long-term behavioral and cognitive problemsMeral Baka is an Emeritus Professor.
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by changing synaptic transmission, neurogenesis, neuro-
nal morphology, and migration in the hippocampus
(Fujioka et al., 2006; Martínez-Téllez et al., 2009; Mulder
et al., 2002; Stevens et al., 2013). However, the effects of
PS depend on the species in the experiment, duration
and intensity of the stress, and when during pregnancy
occurred (Weinstock, 2008).

Hypoxic encephalopathy is the most common brain
injury in early life and one of the reasons for neu-
rodevelopmental disorders (Huseynova et al., 2017). PS
affects the ventilatory response to hypoxia (Golubeva
et al., 2015), and it increases hypoxia-inducible factors
(Jašarevi�c et al., 2021). Furthermore, Palma-Gudiel et al.
revealed that prenatal adverse environment decrease
methylation of EP300 gene, which is neuroprotective
against hypoxic conditions (Palma-Gudiel et al., 2019).
Several studies indicate that acute hypoxia increases
oxidative stress markers such as thiobarbituric acid reac-
tive substances (TBARS) (Coimbra-Costa et al., 2017;
Irarr�azaval et al., 2017; McGinnis et al., 2014).
Myeloperoxidase (MPO) that is released from neutrophils
reacts with H2O2 that can also cause oxidative stress and
plays role in pathogenesis of many neurodevelopmental
disorders (Klebanoff, 1999). The antioxidant enzymes
such as catalase (CAT) provide protection to the brain;
however, oxidative stress may remain afterward, and
reactive oxygen species may cause unavoidable damage
in the long term (Coimbra-Costa et al., 2017). Further-
more, hypoxia activates voltage-gated Ca2+ and K+ chan-
nels as well as AMPA receptors, causing synaptic
excitotoxicity (Bickler & Donohoe, 2002; Mukandala
et al., 2016; Sanchez et al., 2001). It also upgrades
vascular endothelial growth factor (VEGF), which is
crucial for angiogenesis, the formation of new blood
vessels in the brain (Brantley-Sieders & Chen, 2004;
Croll & Wiegand, 2001).

The subgranular zone (SGZ) is significant for brain
development since it contains nestin-expressing neural
progenitor cells (Amaral et al., 2007). Limited hippocam-
pal neurogenesis in SGZ contributes to the formation of
granular neurons in dentate gyrus (DG), which is an
essential region for the synaptic network of novel object
recognition (Kitamura et al., 2009; Luo et al., 2010).
However, considerable studies suggest that the per-
irhinal cortex plays a critical role rather than hippocam-
pus in novel object discrimination (Kumaran &
Maguire, 2007). Therefore, in this study, we investigated
whether the hippocampus involves in novelty-seeking
behavior after the effects of PS and acute hypoxia
exposure.

Considering the effects of PS and hypoxia on brain
development, we questioned the effects of acute hypoxia
following PS on hippocampus in adolescence. In this

study, we measured TBARS, MPO, and CAT levels to
evaluate oxidant and antioxidant balance. Regarding neu-
rogenesis, angiogenesis, and synaptic transmission, we
examined nestin, VEGF, and synaptophysin (SYN)
expressions in hippocampus. This study, thus, exhibits
supportive and distinctive evidence to show the effects of
PS and neonatal acute hypoxia on hippocampus and
novelty-seeking behavior in adolescence.

2 | MATERIALS AND METHODS

2.1 | Animals and experimental design

Adult female Wistar albino rats (200–400 g) were
obtained from Ege University, Laboratory of Animal
Research and Application Center, and housed with ad
libitum food and water under 20-25Co, 12L/12D
laboratory conditions. The female rats (n = 6/each
group) were housed with the male rats overnight follow-
ing the determination of estrous cycle via vaginal smear.
The next day, vaginal plugs were observed and presumed
as the first day of pregnancy. The offspring (n = 11/each
group) stayed in their home cage until weaning and
separated by their genders on postnatal day 21. The
experimental groups were set as (1) PS-hypoxia, (2) PS-
control, (3) NS-hypoxia, and (4) NS-control. This study
was carried out after the approval by the Institutional
Animal Care and Ethical Committee of Ege University
(2017-082).

2.2 | Prenatal stress procedure

The pregnant rats were housed individually and
restrained in a plexiglass transparent cylinder
(19 cm � 6 cm) three times/day for 45 min under two
bulbs (100 W) (Edwards et al., 2002). The restraint stress
was induced between embryonic days 12.5–17 due to the
hippocampus begins to form on embryonic day 12 in rats
(Amaral et al., 2007). The NS group of pregnant dams
was not disturbed.

2.3 | Hypoxia exposure

Forty-four different litters (20 male/24 female) were
exposed to 100% CO2 in an airtight chamber for 5 min on
P10, and re-oxygenation was induced with 100% O2 for
5 min gradually (Okur et al., 1995). Freezing, hyperventi-
lation, head shaking, and tachycardia were observed for
approximately 1 h. Control group was taken to the
experiment room without any application. After the
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experimental process, all groups were taken to their
home cages until weaning.

2.4 | Novel object recognition task

Novel object recognition (NOR) task was described by
Ennaceur and Delacour (Ennaceur & Delacour, 1988).
Animal learns the novel object without any penalty or
reward and encodes the information depending on
exploration and novelty-seeking behavior. On the habit-
uation day (P33), the animals (n = 10/each group) were
placed into a 60 � 60 � 40 box for 5 min and expected
to explore the box. The next day, two familiar objects
(two green toy carousels with and without horses) were
placed on different quadrants of the box symmetrically,
and the rats discovered the objects for 10 min. On the
test day, the familiar object was replaced with a differ-
ent shaped, sized, and colored object (a heart-shaped
toy). The animals were placed into the box and
expected to explore familiar and novel objects for
10 min. The experiment was carried out during their
active phase in a room with dim light daytime. All ses-
sions were recorded, the time spent nearby the novel
object was calculated by two different stopwatches, and
the mean was considered. The box and the objects were
cleaned with 70% alcohol between sessions to avoid
odor factor. The novelty detection time was calculated
as when the animal approached the object less than
2 cm, sniffed, pawed, and self-cleaned alongside the
object (Lueptow, 2017).

2.5 | Tissue preparation and
immunohistochemistry

The animals (n = 6) in each group were anesthetized
with ketamine (50 mg/kg) and xylazine (10 mg/kg) on
P35 following behavioral assessment. Intra-cardiac per-
fusion was administered with 4% formaldehyde in 0.1-M
phosphate-buffered saline (PBS). Brains were collected
and washed in 0.1-M cacodylate buffer and stored in 4%
formaldehyde in 0.1-M PBS for 3 days, respectively. The
next day, brain slices at the level of the dorsal hippo-
campus (plate 21 and 23) were prepared according to
the stereotaxic atlas of Paxinos and Watson (Paxinos &
Watson, 2006). The slices embedded into the paraffin
and sectioned (5 μm) for immunostainings. The sections
were incubated with anti-nestin (1:100, Bioss Antibodies,
China), anti-VEGF (1:100, Sigma Aldrich), and monoclo-
nal anti-synaptophysin (1:100, Sigma Aldrich) primary
antibodies. The following day, the sections were washed

and incubated with anti-mouse IgG (1:200, Sigma
Aldrich) for 40 min and DAB staining applied.

2.6 | Image analysis

Synaptophysin (SYN) expression in CA1 and CA3, nestin,
and VEGF positive cells in the SGZ (cells/mm2) were
examined under a light microscope and microphotographs
were captured (Olympus BX-51, light microscope,
Olympus C-5050 digital camera). Image J (https://imagej.
nih.gov/ij) and cellSens (Olympus Corporation, Japan)
were used for image analysis. For this analysis, the hippo-
campus of each animal was randomly chosen for unbiased
counting, and the averages of 10 images (magnification
�40) from different sections were examined by two
researchers to ensure objectivity (Turgut et al., 2006).
Further, angiogenesis was measured as counting VEGF-
positive vessels on CA1 and CA3 (vessels/mm2). Only clear
lumen and tubular structures were counted for 10 images
from different sections/each animal by two researchers,
and the mean was considered (Zand et al., 2005).

2.7 | Biochemistry

The brains (n = 5) were collected without intra-cardiac
perfusion, and hippocampus was dissected and
homogenized in phosphate buffer (0.5 M, pH: 7.0), (1/10:
w/v). Homogenates were centrifuged for 5 min at 700�g
at 4�C. Supernatants were collected immediately to deter-
mine myeloperoxidase (MPO), catalase (CAT), and
thiobarbituric acid reactive substances (TBARS) levels.
Hydrogen peroxide degradation was recorded at 240 nm
by spectrophotometry, and CAT activity was assessed
(Aebi, 1984). MPO, an enzyme present in granulocytic
and monocytic cells, was calculated by following these
stages: Homogenates were centrifuged at 10,000 rpm for
15 min. Pellets were re-homogenized in 0.5% HETAB
(hexadecyltrimethylammonium bromide) in PBS
(50 mM, pH: 6.0) and centrifuged 10,000 rpm for 10 min.
Supernatants were added to a reactive solution con-
taining 0.5-M o-dianisidine. Hydrogen peroxide solution
(20 mM) was added, and absorbance was recorded at
492 nm with a microplate reader for 3 min with 15-s
intervals. Finally, MPO activity was calculated using the
standard curve (Grisham et al., 1986). Furthermore,
homogenates were incubated with TBARS solution
(0.12-M TBA in 15% TCA and 1% HCl) for 30 min at
95�C, and the TBARS levels were calculated using
1,1,3,3-tetramethoxypropane standard curve (Sözmen
et al., 2001).
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2.8 | Data analysis

One-way ANOVA and post hoc Bonferroni tests were
performed in normal distributed and homogenous data
according to Shapiro–Wilk test. Independent t test was
used to compare hypoxia and control groups between
PS and NS in normality circumstances. Kruskal–Wallis
and Mann–Whitney non-parametric tests were used in
the absence of normal distribution. Pearson correlation
was used to understand whether the results of NOR are
correlated with immunohistological parameters. The
significance was considered as p < 0.05, and data are
shown as mean � standard error of the mean (S.E.M.).
IBM SPSS Statistics 22.0 was used for statistical
analysis.

3 | RESULTS

3.1 | Novel object recognition (NOR)

The discrimination index (DI) was calculated as DI =
(new object/total exploration) � 100. ANOVA results of
the DI demonstrated a significant difference between
groups (F(3,40) = 3.38, p = 0.028). Post hoc test revealed
that PS decreased novelty-seeking in the hypoxia group
(41.58 � 4.75) compared with controls of both NS
(75.87 � 6.71, p = 0.044) and PS (74.88 � 7.62, p = 0.05).
Similarly, independent t test results showed the
negative effects of PS on the novelty discrimination
of hypoxia group compared with NS-hypoxia
(71.85 � 12.28, p = 0.041) (Figure 1). There was no
statistical difference between control and hypoxia in the
NS group.

3.2 | Synaptophysin expressions in CA1
and CA3

Synaptophysin (SYN) immunoreactivity was measured in
CA1 and CA3 regions of hippocampus. Neuron loss and
disorganized pyramidal layers were observed in both
regions of PS-hypoxia group (Figure 2a,b). Moreover, the
axonal sprouting was aberrant in PS-hypoxia group cau-
sed by increased angiogenesis presumably. ANOVA
results of the SYN expression in the CA1 (F(3,24) = 3.99,
p = 0.35) and CA3 (F(3,24) = 14.2, p = 0.001) exhibited
significant difference between groups. The only signifi-
cant difference in CA1 was between PS-hypoxia
(30.68 � 2.82) and PS-control group (43.59 � 2.27,
p = 0.033). Similarly, PS decreased SYN expression in the
CA3 of hypoxia group (25.26 � 2.5) compared with all
groups significantly (p < 0.05) (Figure 2c,d).

3.3 | VEGF and nestin expressions
in SGZ

SGZ was detected from the hippocampal sections under
light microscope. According to ANOVA results, there is a
significant difference between groups for nestin-
expressing cells in the SGZ (F(3,24) = 4.481, p = 0.025). PS
decreased nestin-positive cells in the hypoxia group
(22.08 � 2.70) compared with NS-hypoxia (32.98 � 1.68,
p = 0.05) and NS-control (33.68 � 3.68, p = 0.038). There
was also an enlargement between the granular zone and
hilus in the PS-hypoxia group as evidence of developmen-
tal deficits (Figure 3a).

ANOVA results (F(3,24) = 6.061, p = 0.009) and post
hoc revealed that VEGF expression in the PS-hypoxia

F I GURE 1 The discrimination index

(DI) of novelty-seeking behavior. PS decreased

novelty discrimination in hypoxia group

significantly (n = 10/each group). pa < 0.05

versus NS-control and NS-hypoxia, pb < 0.05

versus PS-hypoxia
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group (32.04 � 2.184) was higher than other groups
(p < 0.05). Furthermore, VEGF-positive cells were quite
prominent in the PS-hypoxia group regarding increased
angiogenesis (Figure 3b). The quantitive results of immu-
noreactivity in the SGZ are shown in Figure 3c,d follow-
ing image analysis.

3.4 | Measurement of angiogenesis

Angiogenesis in the CA1 and CA3 areas was measured
on the microphotographs of VEGF immunostaining at
�40 magnification, and results are shown in Figure 4.
There was a significant difference between groups both
in CA1 (F(3,24) = 8.510, p = 0.001) and CA3
(F(3,24) = 4.011, p = 0.022). PS increased VEGF-positive
tubular structures in the CA1 of hypoxia group
(86.86 � 8.20) compared with NS-hypoxia (55.01 � 2.04,
p = 0.039) and NS-control (47.37 � 5.85, p = 0.015)

significantly. There was no significant difference in CA3
of hypoxia groups (p > 0.05). However, PS increased
angiogenesis in the CA3 of control group (40.71 � 4.48)
compared with NS-control (34.67 � 0.87, p = 0.017)
significantly.

3.5 | TBARS, MPO, and CAT levels

The biochemical results revealed that there was a signifi-
cant difference between groups for TBARS (F(3,20) =
4.080, p = 0.028) and CAT levels (F(3,20) = 11.15,
p = 0.001). PS increased TBARS levels in the hypoxia
group (3.43 � 0.61) compared with NS-control signifi-
cantly (1.04 � 0.30, p = 0.025). Furthermore, the highest
level of the CAT levels was in NS-control compared with
other groups (1.99 � 0.45, p = 0.016) (Figure 5). There
was no significant difference between groups for MPO
levels (p > 0.05).

F I GURE 2 Synaptophysin expressions in CA1 and CA3. The arrows indicate the neuronal loss and disordered pyramidal layers,

causing decreased synaptophysin immunoreactivity in the PS-hypoxia group (a, b). pa < 0.05 versus PS-control (c). pb < 0.05 versus all

groups (d) (n = 6/each group, scale bar = 20 μm, magnification = �40)
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4 | DISCUSSION

Environmental stress during pregnancy may cause neu-
rodevelopmental and cognitive deficits in later life. In
this study, we investigated whether PS exacerbates the
damage of neonatal acute hypoxia exposure in the
hippocampus of adolescent offspring. Furthermore, we
analyzed the novelty-seeking behavior of adolescent rats
in each group to understand the behavioral alterations
caused by PS and hypoxia exposure.

Rodents exhibit natural curiosity and exploration of
novel environments or unknown objects (Douglas
et al., 2003; Peters et al., 2007). This complex behavior is
related to stress responsiveness, maternal care, age, and
anxiety levels (Redolat et al., 2009). Therefore, it involves
many pathways including hippocampus, perirhinal, and
entorhinal cortex (Barker & Warburton, 2011; Broadbent

et al., 2010; Olarte-S�anchez et al., 2015). In our previous
study, PS caused neuronal loss in CA1 and decreased
novel object recognition in adolescent rats with early
acute-pentylenetetrazole-kindling (Çelik et al., 2021).
Similarly, the current data showed that PS decreased
novelty-seeking behavior correlated positively with
synaptophysin immunoreactivity in CA1 (r = 0.538,
p < 0.05) and CA3 (r = 0.665, p < 0.05) of hypoxia group
(Table 1).

Several studies indicated that adolescent rats in
stressful conditions engage in more active, exploratory,
risk-taking, and novelty-seeking behaviors (Douglas
et al., 2003; Shumake et al., 2005; Toledo & Sandi, 2011).
Other studies suggest that PS affects stress responsive-
ness and does not alter anxiety levels as well as
novelty-seeking behavior (Clinton et al., 2008; Pastor
et al., 2018). Furthermore, mild hypoxia exposure leads

F I GURE 3 Nestin and VEGF expressions in SGZ. The large cavities between nestin-expressing cells were observed in the SGZ of PS-

hypoxia as shown by arrows (a). Increased VEGF-positive cells were seen in the PS-hypoxia group (b). PS decreased nestin-positive cells in

hypoxia group. pa = 0.05 versus NS-hypoxia (c). PS increased VEGF expression in hypoxia group pb < 0.05 versus other groups (d) (n = 6/

each group, scale bar = 20 μm, magnification = �40)
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to increased risk-taking and novel object recognition
(Gozal et al., 2017; Pighin et al., 2020). Contrary, human
studies showed the negative effects of acute hypoxia on
cognition (McMorris et al., 2017). Our results emphasize
the primary role of CA3 region in novelty-seeking
behavior linked with the SYN expressions. In this
paradigm, disruption of synaptic transmission between
CA1 and CA3 led to decreased novelty-seeking in PS-
hypoxia group.

CA3 also receives inputs via Mossy fibers from DG
formed by SGZ in prenatal and postnatal brain develop-
ment. Therefore, we also focused on SGZ area of the
hippocampus that has a potential contribution to the syn-
aptic network between CA3 and DG. We examined
VEGF and nestin-expressing progenitor cells in the SGZ.
Immunohistochemical studies demonstrated that PS
reduced nestin-expressing precursor cells significantly.
Previously, it has been reported that nestin deficiency is

associated with object recognition deficits (Wilhelmsson
et al., 2019). The positive correlation between nestin and
DI (r = 0.544, p < 0.05) demonstrated that the lack of
nestin-expressing cells in the SGZ worsen synaptic trans-
mission and novel object discrimination in the PS-
hypoxia group. However, other specific markers are
required to detect those progenitor cells in SGZ. Further-
more, we predicted that hypoxia would increase angio-
genesis in CA1&CA3 regions associated with the increase
of VEGF in SGZ. PS increased VEGF and angiogenesis
even more in hypoxia-induced adolescent offspring.
Accordingly, previous studies established that acute stress
increases neurogenesis associated with VEGF expression
and PS has angiogenic effects (Neigh et al., 2017; Uysal
et al., 2012). PS also increased angiogenesis in the CA3
region of controls. These results generally refer to the
repair and ameliorative functions of VEGF on the dam-
age of PS and hypoxia.

F I GURE 4 Quantitive measurement of angiogenesis. PS increased angiogenesis in CA1 of hypoxia group and CA3 of control group.

pa < 0.05 versus NS-hypoxia and NS-control (a). pb < 0.05 versus NS-control (b) (n = 6/each group)

F I GURE 5 Results of biochemical parameters. (TBARS: thiobarbituric acid reactive substances, CAT: catalase, MPO: myeloperoxidase)

(n = 5/each group) pa < 0.05 versus NS-control, pb < 0.05 versus other groups
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TBARS, CAT, and MPO levels were investigated to
comprehend the effects of PS and hypoxia on hippocam-
pal oxidant and antioxidant balance. It has been reported
that both PS and hypoxia increase TBARS, which is an
end-product of lipid peroxidation (Coimbra-Costa
et al., 2017; Qulu et al., 2016). Another study revealed
that hippocampal TBARS level was decreased over time
after hypoxia exposure (Vetrovoy et al., 2017). In our pre-
vious study, we found that PS increases TBARS and MPO
levels in adolescent rats with early pentylenetetrazole-
kindling (Çelik et al., 2021). Similarly, these results
showed that PS increases TBARS levels in the hypoxia
group compared to NS-hypoxia. Pimentel and colleagues
found that hypoxia-ischemia increased MPO levels
in hippocampus regarding inflammation (Pimentel
et al., 2011). However, our results demonstrated no sig-
nificance for MPO levels in the hippocampus, neither in
PS nor in hypoxia groups Furthermore, several studies
revealed that PS increases CAT activity in primary corti-
cal neurons (Luft et al., 2021) and hippocampus (Fatima
et al., 2019). Contrary, Ahlbom and colleagues indicated
that CAT activity was decreased both in neonatal and
adolescent offspring (Ahlbom et al., 2000). In addition to
these controversial results, our results showed no
difference between groups despite decreased CAT levels.
Consequently, increased lipid peroxidation and insignifi-
cant CAT levels suggest that PS causes developmental
disruptions in the hippocampus by changing the oxidant
and antioxidant balance.

5 | CONCLUSION

This study demonstrated that acute hypoxia exposure
following PS impacted hippocampus development and
novelty behavior of adolescent offspring. Oxidative stress
markers and angiogenesis were increased, and synaptic
transmission in CA1 and CA3 and neural progenitors in
SGZ were disrupted. Therefore, this study provides multi-
disciplinary and unique evidence for the profound effects
of PS and early acute hypoxia on hippocampus develop-
ment. Nevertheless, investigating gender differences,
underlying mechanisms of PS and hypoxia in the adult
hippocampus, as well as other regions of the brain, are
limitations of this study.
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TAB L E 1 Correlations between DI and immunohistological parameters

SYN CA1 SYN CA3 Nestin VEGF DI

PS-hypoxia SYN CA1 Pearson correlation 1 0.680** 0.106 �0.627* 0.538*

Sig. (two-tailed) 0.004 0.696 0.009 0.032

N 6 6 6 6 6

SYN CA3 Pearson correlation 0.680** 1 0.356 �0.378 0.665**

Sig. (two-tailed) 0.004 0.176 0.149 0.005

N 6 6 6 6 6

Nestin Pearson correlation 0.106 0.356 1 �0.472 0.544*

Sig. (two-tailed) 0.696 0.176 0.065 0.029

N 6 6 6 6 6

VEGF Pearson correlation �0.627* �0.378 �0.472 1 �0.620

Sig. (two-tailed) 0.009 0.149 0.065 0.010

N 6 6 6 6 6

DI Pearson correlation 0.538* 0.665** 0.544* �0.620 1

Sig. (two-tailed) 0.032 0.005 0.029 0.010

N 6 6 6 6 6

*Correlation is significant at the 0.05 level (two-tailed).
**Correlation is significant at the 0.01 level (two-tailed).
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