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Abstract
In this study, monthly solar radiation (SR) estimation was performed using five different machine learning-based

approaches. The models used are support vector machine regression (SVMR), long short-term memory (LSTM), Gaussian

process regression (GPR), extreme learning machines (ELM) and K-nearest neighbors (KNN). Modeling of these

approaches was carried out in two stages. In the first stage, VIF analysis was carried out to develop the model. Thus, the

input parameters that decrease the performance of the model are removed. In the second stage, remaining input parameters

such as meteorological data, station location data and spatial and temporal information were used in the forecasting

modeling according to the correlation SR. In this study, the data set is divided into two parts as test and training. 30% was

used in the testing phase, and 70% of the data was used in the training phase. When comparing models, the following error

statistics were used: Nash–Sutcliffe efficiency coefficient (NSE), mean absolute error (MAE), mean absolute relative error

(MARE), root-mean-square error (RMSE) and coefficient of determination (R2). In addition, Taylor diagrams, violin plots,

box error, spider plot and Kruskal–Wallis (KW) and ANOVA test were utilized to determine robustness of model’s

forecast. As a result of the study, the KW test and ANOVA test results showed that the data of many models were from the

same population with observations, and it has proved that LSTM and GPR algorithms are applicable, valid and an

alternative for SR forecasting in Turkey, which has arid and semi-arid climatic regions.

Keywords Solar radiation � Long short-term memory � Gaussian process regression � Support vector machine regression �
Extreme learning machines and K-nearest neighbors � Turkey

1 Introduction

Solar radiation (SR) is the energy emitted by the sun [1].

The energy balances of several physical, chemical and

biological processes are influenced by solar radiation

reaching the Earth’s surface [2, 3, 4]. Changes in solar

radiation have a significant impact on heat fluxes, the

hydrological cycle, terrestrial biological ecosystems and

climate [5, 6]. In addition, solar energy emits significantly

less pollution than traditional sources such as fossil fuels,

and it is the most abundant of all renewable and sustainable

energy resources at locations all over the world and can be

used for commercial purposes through large solar power

plants [7, 8, 9]. Thus, precise measurement and compre-

hension of solar radiation’s spatial–temporal variability are

critical for meteorological and hydrological processes as

well as energy development and usage [10, 11].

Meteorology, hydrology and agricultural activities are

used in several research to forecast SR [12] . For example,

Ododo et al. [13] suggested temperature as a solar radiation

metric. SR has substantial relationships with air tempera-

tures, according to Bandyopadhyay et al. [14]. In order to

forecast solar radiation, Ododo [15] used relative humidity

and maximum temperature. Average air temperature mea-

surements were utilized as input data by Rehman and

Mohandes [16] to forecast solar radiation. Kisi et al. [17]

suggested many meteorological parameters for the SR
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forecast. In addition, current studies in the literature have

revealed that station location information is used in the

forecast of global solar radiation [18]. for example, Kumar

et al. [19] reviewed different models for SR forecast with

latitude, longitude and altitude data. Chabane et al. [20]

estimated SR as a function of latitude and longitude

coordinates.

Over 400 articles were found in Scopus’ reported data-

base for machine learning (ML) approach for SR fore-

casting. The VOSviewer technique was used to generate a

list of important keywords for this research domain

(Fig. 1a). Furthermore, when the adopted research is

examined across time (Fig. 1a), it is clear that many studies

were published in 2018 and beyond. These studies appear

to be more interested in climate change, deep learning, new

machine learning models such as SVM, ELM, climate

change and the development of renewable energy genera-

tion. Figure 1b shows the main regions where solar radia-

tion estimates have been investigated. It is the region of

China with the most research (76), followed by the USA

(63), India (51), Spain (25), Iran (22), France (21) and

Turkey (18).

Some researchers have investigated SR modeling using

different mathematical equations and ML approaches; for

example, Kumar et al. [19] compared the regression model

with the ANN models for SR prediction. Kisi et al. [17]

employed wavelet transform approach with ANN ELM,

radial basis function (RBF) and their hybrid variants.

Rahimikhoob et al. [21] compared the ANN’s and statis-

tical methodologies for deriving SR from satellite images.

Polo et al. [22] investigated the sensitivity of satellite-

based approaches for calculating SR to various aerosol

input and model choices. Ahmad and Tiwari [23] investi-

gated various SR models and discovered that the Collares-

Pereira and Rabl model, as modified by Gueymard, had the

best accuracy for projecting mean hourly SR, and that the

Ertekin and Yaldiz model performed best against measured

data from Konya, Turkey. Sonmete et al. [24] compared

147 SR models available in the literature for monthly solar

radiation estimation in Ankara (Turkey). Citakoglu [25]

also compared the ANFIS, ANN and MLR models, and

different empirical equations; the end results showed that

when it came to estimating monthly SR in Turkey, the

ANN model outperformed the ANFIS, MLR and empirical

equations. Wang et al. [11] compared three different ANN

methods (GRNN, RBNN and MLP models) for predicting

the daily SR using meteorological variables such as air

temperature, relative humidity and sunshine duration. To

our knowledge, no research has been conducted to evaluate

the performance of machine learning approach on SR

prediction by examining optimum conditions such as

optimization or training algorithms and reducing input

parameters.

Solar radiation is studied widely around the world,

particularly in solar-rich locations like the Mediterranean

and the Middle East [26, 27]. Unfortunately, most sites lack

access to and measurement of observed sun radiation val-

ues. The costs of obtaining, installing and maintaining

devices, as well as issues calibrating radiation detecting

equipment, are the main causes for the absence of trust-

worthy radiation data [17]. As a result, location-based

models, temperature-based models, remote sensing-based

approaches, temperature-based models, day and month-

number-based models, cloudiness-based models, sunshine-

based models and hybrid models are all commonly

employed to estimate solar radiation [11, 25, 28–38].

However, due to intricate connections between indepen-

dent and dependent variables, these models cannot always

provide trustworthy estimates, particularly in humid places

where solar radiation is heavily influenced by clouds [11].

The aim of this study is to investigate forecasting of SR

with five different ML approaches, including long short-

term memory (LSTM), support vector machine regression

(SVMR), Gaussian process regression (GPR), extreme

learning machines (ELM) and K-nearest neighbors (KNN).

Geographical positions (latitude, longitude and elevation),

the time information of the station measurements (months

and years) and monthly observed meteorological mea-

surements (temperature, evaporation, wind speed and rel-

ative humidity) of 163 meteorological stations of Turkey

were used to estimate SR. This research will make a sub-

stantial contribution to the existing literature in the fol-

lowing ways:

(i) The majority of Turkish meteorological stations

are used in the SR forecasting process. In addition,

the data has a continuous and long-term recording

period.

(ii) Five different models were utilized for SR fore-

casting, and the methods were compared. In the

model comparisons, the sub-parameters and the

number of inputs were differentiated, and the best

result was determined for each model parameter

and the number of inputs.

(iii) Variance inflation factor (VIF) analysis was per-

formed to enhancing the SR forecasting accuracy,

and the input parameters that reduced the accuracy

of the model were excluded from the study.

(iv) Finally, the Kruskal–Wallis test and ANOVA test

were used to detect whether data estimated and

measured were from the same distribution.
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The next section of the paper presents the ‘‘Materials

and Method.’’ In this section, given study area description

and data set, and theoretical framework of ML approaches,

followed by this is performance metrics and application of

variable selection. Then Sect. 5 presents the results and

discussion, and Sect. 6 presents concluding remarks.

2 Materials and method

2.1 Study area description and data set

Turkey is bordered by the sea on three sides (north, south

and west). Turkey is geographically located between the

36�–42� N and 26�–45� E meridians. The country has a

Fig. 1 Literature review keywords a for the SR forecasting using ML approach in research regions b
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rectangular shape with a width of 1660 km. The actual

coverage area of the country, including the lakes and

islands, is 814,578 km2, whereas the anticipated coverage

area is 783,562 km2. The vast gap between these two

places is due to the country’s steep and rugged terrain. The

country’s highest and most mountainous regions are largely

found in the east. The interior of the country is primarily

flat. Dry climate is seen in the interior of Turkey. Summers

in Turkey are hot and dry, and winters are dry and chilly,

especially in areas distant from the sea. Continental climate

is seen in the mountainous parts of the Eastern Region,

Southeast Region and Inner Region of Turkey. In this cli-

mate type, the annual temperature difference is huge and

the winters are cold [39].

The data used in this study were obtained from the

General Directorate of Meteorology (MGM). In total, 163

meteorological stations were used. Monthly solar radiation

(SR, MJ/m2), max. temperature (Tmax, �C), avg. temper-

ature (Tavg �C), min. temperature (Tmin, �C), avg. wind
speed (WSavg, m/s), elevation (m), year, longitude (�),
month, latitude (�), max. relative humidity (RHmax, %)

and min. relative humidity (RHmin, %) data were supplied

from MGM. The data covers the years 1967–2020, the

stations in the region are located between 2 and 1777 m,

the highest temperatures are 46.40 �C, the relative

humidity reaches a maximum of 110%, and the maximum

solar radiation is read as 31.54 MJ/m2 at the regional sta-

tions. It is understood that under the title of months, there is

a continuous and 12-month periodic component. In the

modeling phase, these parameters were introduced as input

data, respectively. While deciding the order of the input

data in the models, the correlation coefficient from strong

to weak between SR and parameters was considered. The

parameters used in the SR estimation are Tmax, Tavg, Tmin,

WSavg, elevation, year, longitude, month, latitude, RHmax

and RHmin. The correlation between these data and SR is

given in Fig. 2.

In Fig. 2, a strong correlation is observed between T and

SR, while negative correlations are observed between rel-

ative RH and SR. The data was randomly divided into two

parts: training and test data, before the modeling of the

study. Of the 163 stations’ data, 70% was used in the

training phase and the remaining 30% was used in the

testing phase to compare the performance of the models

while training data is used to construct the model. The

training and test rates used are frequently used and rec-

ommended in the literature [11, 40, 41, 42]. Figure 3 shows

the stations that were utilized.

Although the aim of the study is to distribute the stations

regionally homogeneously, it is seen that training stations

are not found in some regions, especially in the northern

regions, in random selection, while in some regions,

especially in the inner parts, there are no training stations.

This is the result of completely random selection. The

distance and independence of the training and test stations,

as shown in Fig. 3, show that a solution is being sought for

a difficult problem. Statistical information about the

training and test stations is given in Table 1.

While the stations were separated during the training

and testing phases, the station balancing was not performed

after the data were separated according to the training or

test rate. For this reason, the data of some stations in the

entire recording period were used in the training phase; for

example, while the previous years were used in the training

phase in some stations, the data of some years were

transferred to the testing phase. For this reason, Table 1

shows that the data in the year title are at least 1967 and at

most 2020. In Table 1, the data are distributed homoge-

neously. For example, maximum temperatures are around

45–46 �C and SR values are about 31 MJ/m2.

2.2 Long short-term memory (LSTM)

LSTM was first presented by Hochreiter and Schmidhuber

[43] based on recurrent neural networks (RNN). It was

created to solve vanishing and exploding gradient diffi-

culties. Using its unique structure, gates and cell state, it

can also maintain dependencies over lengthy periods of

time. To ensure the integrity of this work, a brief review of

the LSTM unit is offered below. The fundamentals of RNN

and LSTM were extensively defined in [44]. LSTM is a

superior evolution of recurrent neural networks (RNNs)

that tackle the drawbacks of RNNs. In addition, LSTM

technology is unusual in that it stores information for a

lengthy period of time. Furthermore, the LSTM is made up

of four layers that are linked together through various

communication protocols. The fact that its entire network

is built up of memory blocks is the next feature. These

blocks are also known as cells. Information is stored in one

cell and then sent to the next using gate controls. With the

help of these gates, it becomes much easier to precisely

examine data [45, 46]. Figure 4 shows the construction of

the LSTM. LSTM equations are listed below:

it ¼ rðWixi þ Uiht�1 þ biÞ ð1Þ
ft ¼ rðWfxt þ Ufht�1 þ bfÞ ð2Þ
ot ¼ rðWoxt þ Uoht�1 þ b0Þ ð3Þ

C
�

t
¼ tanhðWcxt þ Ucht�1 þ bcÞ ð4Þ

Ct ¼ ft � Ct�1 þ it�1 � C
�

t
ð5Þ

ht ¼ ot � tanhðCt�1Þ ð6Þ

In the equations, it, ft and ot are the entrance, forgetting

and exit, respectively; Wi, Wf and Wo show the weights
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connecting the input, forget and output gates to the input,

respectively; Ui, Uf and Uo represent the weights from the

entry, forget and exit gates to the hidden layer in order; bi,

bf and bo indicate the input, forget and output gate bias

vectors, respectively; eCt is the previous state of the cell; Ct

is the current state of the cell; ht-1 refers to the cell’s output

at the previous time point; and ht stands for the output of

the cell [47]. In this study, SR was estimated using

meteorological, spatial and temporal input parameters. The

application of the LSTM model was carried out with the

help of codes written in MATLAB. In this study, adaptive

moment estimation (Adam), stochastic gradient descent

with momentum (SGDM) and root-mean-square propaga-

tion (RMSProp) optimization algorithms were used for the

training of the model and the forecasting performances

were compared. For details of optimization algorithms,

Pandey & Srivastava [48] can be examined.

Fig. 2 Correlation matrix

between SR and each input

variables

Fig. 3 Spatial distribution of training and testing stations
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The equations for Adam are as follows:

mt ¼ b1mt�1 þ ð1� b1Þg t ð7Þ

vt ¼ b2vt�1 þ ð1� b2Þg2t ð8Þ

m
0

t ¼
mt

1� bt1
; v

0

t ¼
vt

1� bt2
ð9Þ

htþ1 ¼ ht �
g
ffiffiffiffiffiffiffiffiffiffiffiffi

v0
tþ 2

p m
0

t ð10Þ

The equations for RMSPRop are as follows:

E g2
� �

t
¼ 0:9E g2

� �

t�1
þ0:1g2t ð11Þ

htþ1 ¼ ht �
g

ffiffiffiffiffiffiffiffiffiffi

E g2½ �
p

tþ 2
gt ð12Þ

gt ¼ rhtJðhtÞ ð13Þ

The equations for SGDM are as follows:

vtþ1 ¼ cvt þ grhJ ð14Þ
htþ1 ¼ ht � vtþ1 ð15Þ

h [ Rd: model parameters; g: learning coefficient; rhJ(ht;
x(i); y(i)): the slope of the target function depending on the

parameters; Gt,ii: each diagonal element is the sum of the

squares of the slope values calculated up to t. iterations,

according to parameter hi; and e: the constant value

assigned to prevent the learning coefficient from dividing

by 0. [49].

2.3 Support vector machine regression (SVMR)
model

Support vector machine (SVM) was first proposed by

Vapnik [50] in 1995. The concept of SVM is based on

statistical learning theory and the principle of structural

risk minimization [50]. Smola [51], devised a form of

regression model called support vector machine regression

Table 1 Information about the

test and training data
Parameters Min Mean Max Std CS Ck

Training Tmax (�C) - 5.80 25.85 45.50 9.02 - 0.37 - 0.57

Tavg (�C) - 19.50 13.62 33.30 9.18 - 0.47 - 0.06

Tmin (�C) - 39.80 1.39 24.00 9.92 - 0.57 0.55

WSavg (m/s) 0.15 1.53 5.09 0.63 0.85 0.81

Elevation (m) 2.00 669.10 1777.0 533.60 0.38 -0.65

Year (1967–2020) 1967 1993 2020 12.60 - 0.15 - 0.60

Longitude (�) 26.37 34.36 44.05 4.93 0.28 - 0.95

Month (1–12) 1 6.50 12 3.45 0.00 - 1.22

Latitude (�) 36.07 39.35 41.74 1.62 - 0.36 - 1.20

RHmax (%) 37.00 94.23 104.00 5.83 - 3.26 15.26

RHmin (%) 0 26.51 76.00 12.48 0.50 -0.07

SR (MJ/m2) 0.79 14.31 31.81 6.50 0.13 - 1.10

Testing Tmax (�C) - 1.00 26.07 46.40 8.94 - 0.34 - 0.75

Tavg (�C) - 16.25 13.89 33.70 9.07 - 0.35 - 0.50

Tmin (�C) - 37.90 1.71 27.00 9.79 - 0.37 - 0.02

WSavg (m/s) 0.00 1.59 5.16 0.64 0.84 1.16

Elevation (m) 1967 1995 2020 11.31 - 0.20 - 0.12

Year (1967–2020) 2.00 689.92 1890.00 542.85 0.00 - 1.33

Longitude (�) 26.39 33.28 44.05 4.81 0.47 - 0.81

Month (1–12) 36.07 38.68 41.96 1.33 0.26 - -0.49

Latitude (�) 1.00 6.50 12.00 3.45 0.00 - 1.22

RHmax (%) 37.00 93.72 110.00 6.84 - 3.18 13.38

RHmin (%) 0 25.41 79.00 11.98 0.74 0.47

SR (MJ/m2) 0.03 14.86 31.54 6.48 0.11 - 1.10

Fig. 4 LSTM structure
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(SVMR). SVMR models were created by merging regres-

sion functions with SVM to handle forecasting, prediction

and regression problems [52, 53]. The SVMR model’s

main goal is to discover a function with the least ‘‘e’’
deviation and that is as linear as possible for all training

data points and target vectors [51]. The SVMR model’s

structural configuration is shown in Fig. 5. The SVMR

regression function’s summary is as follows [54]:

f xð Þ ¼ w� / xð Þ þ b ð16Þ

In the equation, w is the weight vector, b is the devia-

tion, and / is the transfer function.

Optimal conditions are obtained with the Lagrangian

multipliers and kernel function in SVMR. Linear, polyno-

mial, radial basis function (RBF) and sigmoid functions are

examples of kernel functions [39, 55, 56]. Application of

the SVMR model was carried out with the help of codes

written in MATLAB. The linear, polynomial, radial basis

function were used for the training of the model and the

forecasting performances were compared. The following

technical report contains more information on SVM and

SVMR approaches: Classification and regression with

support vector machines [57].

2.4 Gaussian process regression (GPR) model

GPR is a probabilistic nonparametric approach. Both esti-

mations and confidence intervals are calculated with GPR a

probabilistic nonparametric model. GPR is a significant

extension of the Gaussian probability distribution. The

probability of a Gaussian distribution is calculated using

the input vectors. Each input data vector’s probability is

determined. As a result, the GPR model computes a mean

and variance–covariance vector [58, 59]. The SVMR

regression function is:

f � GPR mðxÞ; kðx; x0Þð Þ ð17Þ

where x is the vector of input variables; m(x) is the average

function of input variables; and k(x, x’) is the variance–

covariance matrix. The shape of a multi-variate Gauss

distribution is defined by the variance–covariance matrix.

Kernel (with ardmatern32, ardmatern52, squaredexpo-

nential, ardsquaredexponential, matern32, matern52

covariance function) and basis (with constant, none, linear,

pureQuadratic, squaredexponential covariance function)

were used in this study because they performed better in

forecasting studies than the others. In the SR estimation,

the function that gives the least error according to the error

criteria in the next section is used. For details of covariance

function, Rasmussen and Williams (2006) [58] and Neal

[60] can be examined.

2.5 Extreme learning machines (ELM)

Extreme learning machine (ELM) was first presented by

Huang et al. in 2006. ELM is a single hidden layer feed-

forward neural network training algorithm that converges

significantly faster than traditional ANN methods and

produces promising results [61, 62]. This is because the

input weights are created at random, resulting in a unique

least-squares solution for the output weights, which is

solved by the Moore–Penrose function [63]. Because the

Fig. 5 Nonlinear support vector

regression configuration
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randomly initiated hidden neurons in ELM’s underlying

theory are fixed, ELM is extraordinarily efficient at

achieving a global optimum solution using universal

approximation capabilities. Slow convergence, poor gen-

eralization, local minima difficulties, overfitting and the

necessity for iterative tweaking are key drawbacks of the

ANN model, all of which point to ELM’s superiority over

ANN [63, 64, 65]. The ELM model’s general structural

configuration is given Fig. 6.

The SVMR regression function’s summary is as follows:

X

L

i¼i

Bigiðaixt þ biÞ ¼ zt ð18Þ

In Eq. 18, L is the hidden nodes number, gi (ai xt ? bi)
is the hidden layer output function, ai and bi is hidden node

parameters, Bi is the weight factor connecting the ith hid-

den nodes and output node and zt is ELM model output.

The application of the ELM model was carried out with

the help of codes written in MATLAB. The number of

input neurons was tried from 1 to 300, and training ratio

was chosen 0.7 in this study. The input parameters in Fig. 6

are defined separately to the ELM model according to the

correlation order expressed under the data set title (see

Fig. 2).

2.6 K-nearest neighbors (KNN)

The KNN is a nonparametric classification method inven-

ted by Evelyn Fix and Joseph Hodges in 1951 [66] and

expanded by Altman [67]. Data categorization and

regression are both done with KNN. In both circumstances,

the input is a data set with the k closest training samples.

The KNN approach searches through a database for data

that is comparable to the observed data. These data are

referred to as the present data’s nearest neighbors [68]. In

this paper, KNN is used to forecast mostly related testing

stations with the training station. The KNN regression

function’s summary is as follows:

fKNNðx0Þ ¼
1

K

X

i2NK ðx0Þ
yi ð19Þ

For an unknown pattern x
0
, KNN regression computes

the mean of the function values of its K-nearest neighbors

with set NK(x
0

) containing the indices of the K-nearest

neighbors of x
0
. The notion of localization of functions in

data and label space underpins the idea of averaging in

KNN. In local neighborhoods of xi, patterns x
0
are expected

to have similar continuous labels f(xi) like yi [69]. The

application of the KNN model was carried out with the

help of codes written in MATLAB. The kdtree and

exhaustive nearest neighbor search method were used for

the training of the model and the forecasting performances

were compared. The study flowchart of this study is given

in Fig. 7.

3 Performance metrics

The accuracy of the models proposed in this research was

evaluated using widely known performance metrics [70].

MAE, MARE, RMSE, R2 and NSE were used in model

evaluations. Low MAE, MARE and RMSE values, as well

as R2 values near 1, suggest accurate and dependable

estimations. NSE values range from - ! and 1 [71].

Fig. 6 ELM structure
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RMSE ¼ 1

n

X

n

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SRpredicted � SRmeasured

� �2
q

ð20Þ

MARE ¼ 100
1

n

X

n

i¼1

SRpredicted � SRmeasured

�

�

�

�

SRpredicted

ð21Þ

MAE ¼ 1

n

X

n

i¼1

SRpredicted � SRmeasured

�

�

�

� ð22Þ

R2 ¼
Pn

i¼1 ðSRimeasured � SRimeasuredÞ
2
:ðSRipredicted � SRpredictedÞ

2

Pn
i¼1 SRimeasured � SRimeasured

� �2
:
Pn

i¼1 SRipredicted � SRpredicted

� �2

ð23Þ

NSE ¼ 1�
Pn

i¼1 SRpredicted � SRmeasured

� �2

Pn
i¼1 SRmeasured � SRmeasured

� �2
ð24Þ

where SRmeasured is SR variables measured by MGM;

SRpredicted is SR variables predicted by approaches;

SRmeasured is average of SR variables; and n is amount of

data. In this study, Taylor diagram, violin and box error

plot were used to compare LSTM, SVMR, GRP, ELM and

KNN approaches. These diagrams graphically summarize

how close the models are to the observations [72, 73, 74].

Comparisons in the Taylor diagram were made using

model correlations and root-mean-square deviation

(RMSD). On the other hand, many statistical parameters

such as mean median standard deviation etc. are used in the

violin diagram. In addition, for the final evaluation of the

performance of the models, the spider graph of the methods

of the input combinations that gave the best results was

also given and more than one evaluation criteria were

evaluated on a single figure [75].

4 Application of variable selection

In this study, model development was realized by reducing

the input parameters. Models’ variance inflation factors

(VIFs) were calculated in three steps, and significant

variables were selected from among many potential vari-

ables. Table 2 shows the computed VIFs for each phase. In

Table 2, VIFs greater than 5.0 are written using bold def-

initions. In the first stage, the VIFs of the Tavg and Tmin

variables are all greater than 5.0, as shown in Table 2. The

Fig. 7 Study flowchart
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value of 5.0 of VIF is the critical value, and the parameters

exceeding this value represent the parameters that should

be excluded from the modeling [25]. Tavg and Tmin of

t values are also less than tcri. As a result, the variables Tavg
and Tmin are no longer included in the models. In the

second step, a smaller number of variables are purposefully

chosen, and after witnessing high VIF’s for Tavg and Tmin

variables, Tavg and Tmin are deleted for good, as Tavg and

Tmin are highly connected. In the last stage, the VIFs of all

coefficients are less than 5.0, and the t values of all vari-

ables are greater than tcri. Tmax (�C), WSavg (m/s), elevation

(m), year, longitude (�), month, latitude (�), RHmax (%) and

RHmin (%) are selected as valid input variables as a con-

sequence of this study.

The performance of the LSTM, SVMR, GRP, ELM,

KNN models was checked using the suggested 9-input

parameters (for example Tmax as 1st input, WSavg as second

input, …, RHmin as lastly input) during both training and

testing phases. The results are given next section.

5 Results and discussion

The LSTM, SVMR, GRP, ELM and KNN techniques were

utilized in this study to create models for forecasting SR in

Turkey’s using meteorological parameters, location and

spatial and temporal information.

The LSTM model was used to estimate SR data in the

first part of the research. Several trials were undertaken

throughout the creation phase of LSTM models by

adjusting the number of neurons in the hidden layer. In the

LSTM models, tanh was used as ‘‘state activation func-

tion’’ and sigmoid was used as ‘‘gate activation function’’

[39]. Also, in LSTM models, Adam, SGDM and RMSProp

optimization algorithms were used for network training.

Trials were conducted with a single hidden layer, between

10 and 30 neurons, and 50 to 300 iterations in the LSTM

model architecture. Initial learning rate coefficient was set

to 0.05, learning rate reduction factor was set to 0.2, and

learning rate reduction time was set at 125 for the other

parameters of the LSTM model. The selection of LSTM

model parameters was inspired by [39]. The best outcome

for each output value is provided in Table 3 as a conse-

quence of the trials undertaken during the LSTM modeling

phase. The SVMR model was utilized to estimate SR in the

current study’s second phase. The ‘‘kernel function’’ was

used to create estimating models in the SVMR technique.

The common nonlinear radial basis function (RBF), linear

and polynomial were utilized in this study because they

performed better in estimate studies than the other kernel

functions. The lowest values of alpha (ai - a*i) and bias

(b) parameters, representing the difference between two

Lagrange multipliers, were obtained with sequential mini-

mal optimization (SMO). The GPR model was utilized to

estimate SR in the third phase of the current investigation.

Estimation models were created using kernel and basis

functions in the GPR technique. In this study, many kernel

functions have also been tested. In order to obtain the best

performance value, mater32, matern52, ardmatern32, ard-

matern52, ardsquaredexponential and squaredexponential

covariances were tried in this study. Similarly, many basis

functions have been tried. Functions tried are constant,

none, linear and pureQuadratic, respectively. The function

that gave the least error in the training phase was used in

the testing phase. ‘‘Subset of regressors approximation’’

and ‘‘fully independent conditional approximation’’ were

used to determine beta and sigma parameters used in GPR

approach [39]. In the fourth phase of the present study,

ELM model was used for estimation of SR. The ELM

allows to train a single hidden layer. The ELM uses

feedforward network for estimation with the Moore–Pen-

rose pseudoinverse of matrix [62]. In ELM approach,

estimation models were developed with the use of different

Table 2 Summary of the results of the VIF analysis

Term Coef T-Value VIF

Step 1 Constant - 45.05 - 13.8

Tmax (�C) 0.65152 237.62 2.12

Tavg (�C) 1.08002 112.09 27.95

Tmin (�C) - 0.41543 2 46.9 27.46

WSavg (m/s) 0.9467 32 1.13

Elevation (m) 0.02596 16.65 1.1

Year 0.004763 84.8 2.88

Longitude (�) - 0.08565 - 17.31 1.87

Month - 0.0971 - 4.94 1.66

Latitude (�) - 0.57637 - 107.85 1.12

RHmax (%) - 0.01723 - 6.16 1.33

RHmin (%) 0.04232 21.5 1.62

R2 = 0.7562 Tcri = 1.96

Step 2 Constant 0.09 0.67

Tavg (�C) 1.1697 109.64 19.88

Tmin (�C) 2 0.64791 - 65.49 19.88

R2 = 0.5796 Tcri = 1.96

Step 3 Constant - 45.65 - 13.82

Tmax (�C) 0.65152 237.62 2.12

WSavg (m/s) 1.0239 34.36 1.12

Elevation (m) 0.02747 17.42 1.09

Year 0.004237 79.12 2.56

Longitude (�) - 0.05686 - 11.61 1.79

Month - 22.84% - 1182.00% 1.56

Latitude (�) - 0.56625 - 104.98 1.12

RHmax (%) - 0.02814 - 10.04 1.31

RHmin (%) 0.04858 24.56 1.59

R2 = 0.7505 Tcri = 1.96
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Table 3 Comparison of the model results of the testing phase after reducing the number of inputs

Method Criterion Inputs Avarage

1 2 3 4 5 6 7 8 9

LSTM-ADAM RMSE 2.447 2.487 2.367 2.239 2.462 2.575 2.424 2.465 2.365 2.426

MARE 16.718 16.843 15.965 14.291 16.062 17.299 15.369 15.360 15.652 15.951

MAE 1.897 1.926 1.816 1.705 1.890 1.991 1.819 1.842 1.804 1.855

R2 0.864 0.856 0.872 0.882 0.858 0.848 0.866 0.861 0.873 0.864

NSE 0.858 0.854 0.868 0.882 0.857 0.843 0.861 0.856 0.868 0.861

LSTM-RMSProp RMSE 2.532 2.679 2.424 2.357 2.512 2.417 2.333 2.342 2.333 2.436

MARE 16.522 17.851 16.426 16.179 17.423 17.706 14.272 14.174 14.247 16.089

MAE 1.961 2.068 1.863 1.818 1.950 1.894 1.764 1.722 1.774 1.868

R2 0.849 0.831 0.865 0.872 0.853 0.869 0.882 0.871 0.883 0.864

NSE 0.848 0.830 0.861 0.869 0.851 0.862 0.871 0.870 0.871 0.859

LSTM-SGDM RMSE 2.491 2.523 2.308 2.286 2.333 2.192 2.117 2.153 2.266 2.296

MARE 16.686 17.570 15.255 15.252 16.450 14.236 12.912 13.782 14.365 15.168

MAE 1.936 1.959 1.769 1.756 1.799 1.673 1.588 1.635 1.713 1.759

R2 0.854 0.857 0.877 0.878 0.874 0.887 0.896 0.891 0.880 0.877

NSE 0.853 0.850 0.874 0.876 0.871 0.886 0.894 0.890 0.879 0.875

SVMR-Linear RMSE 4.198 4.116 3.764 3.741 3.743 3.309 3.300 3.297 3.268 3.637

MARE 34.437 33.896 28.910 28.907 28.963 25.119 24.952 24.873 24.783 28.316

MAE 3.415 3.339 3.046 3.025 3.028 2.625 2.616 2.615 2.594 2.923

R2 0.590 0.606 0.671 0.676 0.675 0.748 0.749 0.750 0.755 0.691

NSE 0.417 0.401 0.335 0.331 0.331 0.259 0.257 0.257 0.253 0.316

SVMR- Polynomial RMSE 4.261 3.771 3.483 3.430 3.448 2.325 2.199 2.226 2.248 3.043

MARE 28.399 28.897 25.287 25.250 25.335 16.175 14.531 14.678 14.776 21.481

MAE 3.358 3.011 2.781 2.727 2.728 1.772 1.658 1.677 1.689 2.378

R2 0.595 0.669 0.715 0.725 0.723 0.877 0.887 0.885 0.883 0.773

NSE 0.429 0.336 0.287 0.278 0.281 0.128 0.114 0.117 0.120 0.232

SVMR-RBF RMSE 3.952 3.712 3.522 3.451 3.430 2.303 2.323 2.312 2.297 3.034

MARE 30.014 28.189 25.105 25.123 24.921 16.089 15.456 15.213 14.899 21.668

MAE 3.158 2.960 2.789 2.722 2.707 1.763 1.742 1.725 1.705 2.363

R2 0.637 0.679 0.709 0.721 0.724 0.878 0.877 0.877 0.878 0.776

NSE 0.369 0.326 0.293 0.282 0.278 0.125 0.128 0.126 0.125 0.228

GPR kernel RMSE 3.931 3.711 3.549 3.504 3.593 2.461 2.379 2.381 2.344 3.095

MARE 30.976 28.690 25.482 25.215 25.243 16.589 15.228 14.981 14.778 21.909

MAE 3.185 2.991 2.826 2.791 2.845 1.871 1.785 1.770 1.755 2.424

R2 0.640 0.678 0.702 0.710 0.696 0.857 0.867 0.866 0.870 0.765

NSE 0.635 0.674 0.702 0.710 0.695 0.857 0.866 0.866 0.870 0.764

GPR basis RMSE 3.930 3.710 3.546 3.515 3.633 2.461 2.654 2.725 2.481 3.184

MARE 30.963 28.673 25.462 25.269 25.253 16.610 16.219 17.325 15.985 22.418

MAE 3.184 2.989 2.826 2.796 2.875 1.883 1.959 2.027 1.879 2.491

R2 0.640 0.678 0.703 0.708 0.691 0.857 0.845 0.834 0.856 0.757

NSE 0.635 0.675 0.703 0.708 0.688 0.857 0.833 0.824 0.854 0.753

ELM RMSE 4.369 3.893 3.713 3.563 3.545 2.9714 3.038 3.245 3.261 3.511

MARE 30.138 29.451 26.504 24.498 25.656 22.1985 22.801 25.174 24.194 25.624

MAE 3.485 3.131 2.955 2.859 2.820 2.3174 2.396 2.510 2.611 2.787

R2 0.616 0.650 0.694 0.712 0.707 0.796 0.787 0.769 0.749 0.720

NSE 0.549 0.642 0.674 0.700 0.703 0.7912 0.782 0.751 0.749 0.705

KNN-Exhaustive RMSE 5.358 5.385 4.964 4.909 4.823 3.315 3.364 3.482 3.514 4.346

MARE 34.837 34.218 31.840 30.621 30.371 20.567 20.190 20.906 21.440 27.221
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the number of cells in the interlayer, the standardization

equation (Eq. 25) used while introducing the data to the

model and the training ratio of 0.7 [62]. While estimating

with ELM, the number of hidden layers was tried from 1 to

300 and the error criteria were obtained during the test

phase by taking note of the number of hidden layers that

gave the least RMSE error.

y ¼ xi� x

r
ð25Þ

The KNN model was utilized to estimate SR in the

current study’s final phase. To determine the k-nearest

neighbors, estimate models were created using exhaustive

and kdtree functions in the KNN technique. In this study,

many distance metrics functions have also been tested. In

order to obtain the best performance value, seuclidean,

cosine, hamming, correlation, mahalanobis, jaccard,

spearman distance metrics were tried in the exhaustive

function. Similarly, many kdtree distance functions have

been tried. Functions tried are euclidean, cityblock, min-

kowski and chebychev, respectively. The function that

gave the least error in the training phase was used in the

testing phase.

A direct comparison of the approaches is made in

Table 3 for testing phase. The input parameters were

introduced to the models by considering the correlation

size between SR. The input parameters used for SR fore-

casting are Tmax, WSavg, elevation, year, longitude, month,

latitude, RHmax and RHmin, respectively.

It can be noted that the LSTM model outperformed the

GPR SVMR, KNN and ELM models in terms of each

average performance metrics at the testing phase. MARE

values (%) varied between 15.17 and 28.31, MAE values

between 1.759 and 3.358 and RMSE values between 2.297

and 4.422. In the testing phase, the best input combination

was observed in the SGDM optimization algorithm of

LSTM, in which 7 input parameters were used. When the

models are compared with the best in themselves, the

kernel function is superior to the basis function in GPR.

Similarly, SGDM is the LSTM optimization algorithm that

gives the least error metric, followed by Adam and

PMSEProp. In SVMR, on the other hand, while polynomial

is given the least faulty function, it is followed by RBF and

linear functions. The lowest error in KNN was observed in

kdtree function, followed by exhaustive the function. The

optimum sets of model inputs for each of the investigated

predictive modeling strategies were not the same, demon-

strating that each model type reacts differently to distinct

input variable sets and data patterns/attributes in the input

data [76]. Overall, the best accurate input combinations for

the LSTM, SVMR, GPR, ELM and KNN were based on

models 7, 7, 9, 6 and 8. Evaluation of different modeling

approaches (LSTM, SVMR, GPR, ELM and KNN) with

different sets of input variables (i.e., 1–9) shows that the

most accurate predictions depend on the model used and

the optimization of the model.

NSE values of less than one are ideal, as this indi-

cates a 100 percent success rate. Low estimation success

is indicated by NSE values between 0.3 and 0.5,

acceptable estimation success is shown by NSE values

between 0.5 and 0.7, great estimation success is indi-

cated by NSE values between 0.7 and 0.9, and out-

standing estimation success is indicated by NSE values

between 0.9 and 1 [71]. In Table 3, mean NSE values

ranged between 0.228 and 0.875. These values indicate

that the models in which some inputs are used show low

estimation success, but the best model shows great

estimation success. For example, according to the NSE

criterion, the most successful method was obtained in the

modeling using 7 input combinations in the SGDM

architecture of the LSTM approach. The estimating

power of the LSTM with SGDM model was fairly good.

The current findings demonstrated that the LSTM model

could overcome nonlinear relationships between vari-

ables, indicating that it performed well.

Table 3 (continued)

Method Criterion Inputs Avarage

1 2 3 4 5 6 7 8 9

MAE 4.185 4.196 3.862 3.716 3.673 2.444 2.465 2.581 2.623 3.305

R2 0.453 0.442 0.506 0.513 0.524 0.754 0.753 0.736 0.730 0.601

NSE 0.321 0.314 0.417 0.430 0.450 0.740 0.733 0.713 0.708 0.536

KNN-Kdtree RMSE 5.358 5.383 4.964 4.892 4.823 3.279 4.600 3.207 3.297 4.422

MARE 34.837 34.206 31.837 30.505 30.369 19.846 28.949 18.937 19.554 27.671

MAE 4.185 4.194 3.861 3.723 3.672 2.374 3.465 2.339 2.409 3.358

R2 0.453 0.442 0.506 0.515 0.524 0.758 0.558 0.773 0.759 0.588

NSE 0.321 0.315 0.418 0.434 0.450 0.746 0.500 0.757 0.743 0.520
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The scatter-plots for LSTM, SVMR, GPR, ELM and

KNN models are shown in Fig. 8. Figure 8 shows the

regression coefficient R2 and the regression equation

(y = ax ? b). With a best R2 value of 0.8957, the LSTM

model was able to obtain the best fit line between observed

and anticipated SR values using the 7-input combination.

The SVMR, GPR, ELM and KNN approaches had

R2 = 0.8871, 0.8701, 0.796 and 0.773, respectively.

Figure 8 shows the observed and estimated SR values

for the four models during the testing phase. This is an

indication of the variation of underestimated or overesti-

mated SR values. As shown in the figure, low SR values

are too high, and values are slightly overestimated. (This
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can be observed by following the dashed black line, 1:1 or

the best line, y = x.) The relatively weak performance for

these extreme values of SR indicates that the model is

likely to fall short on the training data set used to estimate

its parameters. When the relationship between the scatter-

plots of the model results and the best line is examined, it is

observed that the models forecast low SR values (\ 10 MJ/

m2) higher and higher values ([ 20 MJ/m2) low. This can

be observed at the intersection of the best line and the

model line (red) and is a disadvantage observed in all

approaches. Although all approaches better predict inter-

mediate SR values (10–20 MJ/m2), some deviations were

observed when estimating high and low values. It is

observed that the convergence to the best line is mostly in

the LSTM-SGDM approach, and some low values are

estimated with quite outlier (with high values) values in the

KNN approach.

In previous statements, LSTM was considered as the

best model for SR forecast since it had the least RMSE,

MAE and MARE and highest R2 and NSE values. All data

were distributed around the regression line in scatter plots.

In these plots, it was discovered that all models essentially

followed the same regression lines. Although the MSE,

MAE and RMSE error criteria indicated the correctness of

the forecasted variables, they do not offer information

about the models’ distribution [39]. Therefore, violin plot

(Fig. 9), box error plot (Fig. 10) and Taylor diagram

(Fig. 11) were used for comparison.

The conformity of estimation data with observed data

was examined using the violin plot. Further statistical

comparisons of the models were conducted using the violin

plot. Figure 9 shows a violin plot for the best outcome of

the LSTM, SVMR, GPR, ELM and KNN techniques.

Differences are seen in each ML approach based on the

errors presented by the box plots (Fig. 10), with smaller

error values circled for the GRP, LSTM, SVMR and ELM

models. The error graph was obtained by subtracting the

predicted values from the observed values by absolute

value [77]. The Taylor graph in Fig. 11 is the graphical

representation of Eq. 20 (RMSD) between the model and

the observed values and the correlation between these two

values [78].

The five best models in Fig. 9 were very similar to each

other; however, LSTM was distinguishable from the other

four approaches in Fig. 10’s box plot diagrams and errors

diagrams. The extreme error values of these models are

almost at the same level; however, the KNN method differs

from other methods based on excessive errors for its esti-

mations. When the error graph is examined, it is seen that

in particular the KNN model overestimates, while the ELM

model underestimates. When using the Taylor, the LSTM

model produced SR estimates that were quite similar to

observed values. The Taylor diagram also demonstrated

that the LSTM technique outperformed the other models.

It was quite difficult to identify the superior method for

SR estimation in the study. For this reason, many statistical

and graphical methods have been used. Finally, spider

plots, which are used to evaluate all error criteria of the

best approaches, were drawn in the study. Figure 12 shows

the spider plot.

Thanks to the spider graph, it can be easily seen that

LSTM is less than other approaches according to the

RMSE, MARE and MAE criteria, while the exact opposite

NSE and R2 values are better than other methods. In

addition, it has been determined that the least successful

method is the KNN technique.

Finally, statistical significance comparisons between the

results of the five approaches and the observed data were

Fig. 9 Violin plot for GPR, LSTM, SVMR, ELM and KNN approaches
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made. Firstly, the Kruskal–Wallis test was employed to see

whether the distributions of the estimated and measured

data were identical. [39, 79]. In the estimations of the three

approaches (GPR, LSTM and KNN) in Table 4, the H0

hypothesis is rejected. In other words, it demonstrates that

the means of the anticipated and observed data are not

significantly different. Other models, on the other hand,

have a considerable difference, and it is likely that the

model findings are not from the same field as the actual

data. The KW test was performed at 95 percent of the

confidence interval.

With the KW test in Table 4, it has been seen that the

models have less errors, which does not indicate that the

technique is fully appropriate. This result shows that these

models do not always provide reliable SR estimates due to

the complex connections between independent and

dependent variables. In particular, the large number of data

and the inability to predict the extreme values well cause

the H0 hypothesis to be accepted in the KW test [80]. In

Table 4, the GPR, LSTM and KNN approaches passed the

KW test, meaning that the estimates given by these

methods come from the same mean as the measured SR.

Then, test results of the applied models were also evaluated

by one-way analysis of variance (ANOVA) for evaluating

the robustness (the significance of differences between the

measured and estimated SR values) of the different

machine learning approaches [81]. The test was set at a

95% significance level. Table 5 gives the test statistics.

In Table 5, the GPR kernel has the lowest test value

(0.51) with the highest significance level (0.4734) com-

pared with the others. According to the ANOVA test, the

GPR kernel model is more robust than the GPR basis and

Fig. 10 Box plot diagrams and errors diagrams for GPR, LSTM, SVMR, ELM and KNN approaches

Fig. 11 Taylor diagrams for GPR, LSTM, SVMR, ELM and KNN approaches
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LSTM-Adam models (the similarity between the measured

SR values and the GPR kernel forecasts is significantly

high) in modeling monthly SR. All other methods failed

this test. Thus, unlike the ones stated above, it was decided

that GPR kernel and LSTM ADAM were the most suc-

cessful methods in this study.

6 Conclusion

The primary aim of the current research is to make SR

prediction with different machine learning approaches. It

was also to investigate the applicability and capacity of ML

approaches by examining the effect of input parameters on

forecast accuracy and removing parameters that decrease

forecast accuracy to increase forecast performance. Finally,

the most important findings of this study might be stated as

follows:

1. VIF analysis was performed to develop the model.

Thus, the input parameters that reduce the performance

of the model are eliminated.

2. When the models are compared within themselves,

kernel function is superior to the basis function in GPR,

Polynomial is superior to the RBF and linear function

in SVMR, SGDM is superior to the Adam and

RMSProp optimization algorithm in LSTM and Kdtree

function is superior to the exhaustive function in KNN.

3. The error criteria of MAE, MARE, RMSE, R2 and

NSE, the results were analyzed according to the

Taylor, violin, box error and spider plots and it was

decided that the method that best predicted the

observed values was LSTM. It is followed by GRP,

SVMR, ELM and KNN.

4. LSTM model average performance metrics at the

testing phase. MARE values (%) varied between

Fig. 12 Spider graph for best

approaches

Table 4 KW test results

Method P value Critical value Ho*

GPR Kernel 0.7327 0.05 Reject

Basis 0.0849 0.05 Reject

LSTM ADAM 0.8302 0.05 Reject

RMSProp 7.44 9 10–11 0.05 Accept

SGDM 0.0353 0.05 Accept

SVR Linear 2.00 9 10–16 0.05 Accept

Polynomial 2.45 9 10–5 0.05 Accept

RBF 1.42 9 10–7 0.05 Accept

ELM – 1.23 9 10–6 0.05 Accept

KNN Exhaustive 0.1696 0.05 Reject

Kdtree 5.46 9 10–7 0.05 Accept

Ho*means that there are differences between the mean estimate and

measurement values
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15.17 and 28.31, MAE values between

1.759 and 3.358, RMSE values between 2.297 and

4.422 and mean NSE values reached 0.875.

5. In addition, statistical significance test of the analysis

results was performed with KW and ANOVA. It was

concluded that the method that is more robust than

other methods is GPR. This is followed by LSTM and

KNN. With these tests, it was concluded that the

predictions of the SVMR and ELM models were

doubtful, while the predictions of the GPR, LSTM and

KNN models could represent the mean.

6. Finally, these results proved that LSTM and GPR

algorithms are applicable, valid and an alternative for

SR estimation in Turkey, which has arid and semi-arid

climatic regions.

The seven main limitations of this study can be men-

tioned as follows: (i) using data from 163 meteorological

stations to represent Turkey, (ii) using data from 1967 to

2020, (iii) using VIF analysis for input selection, (iv) using

different optimization techniques and five different

machine learning methods, (v) using visual comparison

criteria (violin, Taylor, spider and box plot) in addition to

performance metrics and (vi) KW and ANOVA tests are

used in the accuracy of the results.

This study is an effort to estimate SR in Turkey, which

is of great importance in energy balances and production,

biological processes, hydrological cycle, terrestrial bio-

logical ecosystems and climate. In future studies, the

accuracy of the regional study can be increased by pro-

viding new machine learning methods. In addition to

machine learning methods, it is considered to develop

models that give equations using nature-inspired opti-

mization algorithms and input parameters.
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(DSİ).

Code availability Not applicable.

Declarations

Conflicts of interest The authors declare no conflicts of interest.

Ethics approval The author paid attention to the ethical rules in the

study. There is no violation of ethics.

Consent for publication: If this study is accepted, it can be published

in the Neural Computing and Applications.

References

1. Keller B, Costa AMS (2011) A Matlab GUI for calculating the

solar radiation and shading of surfaces on the earth. Comput Appl

Eng Educ 19:161–170. https://doi.org/10.1002/cae.20301

2. Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais

N et al (2010) Terrestrial gross carbon dioxide uptake: global

distribution and covariation with climate. Science (80-)

329:834–838. https://doi.org/10.1126/science.1184984

3. Islam MD, Kubo I, Ohadi M, Alili AA (2009) Measurement of

solar energy radiation in Abu Dhabi. UAE Appl Energy

86:511–515. https://doi.org/10.1016/j.apenergy.2008.07.012

4. Khatib T, Mohamed A, Sopian K (2012) A review of solar energy

modeling techniques. Renew Sustain Energy Rev 16:2864–2869.

https://doi.org/10.1016/j.rser.2012.01.064

5. Meza F, Varas E (2000) Estimation of mean monthly solar global

radiation as a function of temperature. Agric For Meteorol

100:231–241. https://doi.org/10.1016/S0168-1923(99)00090-8

6. Kisi O (2014) Modeling solar radiation of Mediterranean region

in Turkey by using fuzzy genetic approach. Energy 64:429–436.

https://doi.org/10.1016/j.energy.2013.10.009

7. Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable

energy sources in environmental protection: a review. Renew

Sustain Energy Rev 15:1513–1524. https://doi.org/10.1016/j.rser.

2010.11.037

8. Park J-K, Das A, Park J-H (2015) A new approach to estimate the

spatial distribution of solar radiation using topographic factor and

Table 5 ANOVA test results of

the LSTM, SVMR, GPR, ELM

and KNN techniques in the

testing phase

Method F-statistics Resultant singnificance level Ho*

GPR Kernel 0.51 0.4734 Accept

Basis 0.53 0.4683 Accept

LSTM ADAM 0.67 0.4135 Accept

RMSProp 48.03 4.29 9 10–12 Reject

SGDM 10.1 0.0015 Reject

SVR Linear 50.56 1.18 9 10–12 Reject

Polynomial 10.27 0.0014 Reject

RBF 20.86 4.96 9 10–6 Reject

ELM – 13.23 0.0003 Reject

KNN Exhaustive 2.93 0.0868 Accept

Kdtree 26.82 2.52 9 10–7 Reject

Ho* means that there are same between the mean estimate and measurement values

Neural Computing and Applications (2023) 35:887–906 903

123

https://doi.org/10.1002/cae.20301
https://doi.org/10.1126/science.1184984
https://doi.org/10.1016/j.apenergy.2008.07.012
https://doi.org/10.1016/j.rser.2012.01.064
https://doi.org/10.1016/S0168-1923(99)00090-8
https://doi.org/10.1016/j.energy.2013.10.009
https://doi.org/10.1016/j.rser.2010.11.037
https://doi.org/10.1016/j.rser.2010.11.037


sunshine duration in South Korea. Energy Convers Manag

101:30–39. https://doi.org/10.1016/j.enconman.2015.04.021

9. Purohit I, Purohit P (2015) Inter-comparability of solar radiation

databases in Indian context. Renew Sustain Energy Rev

50:735–747. https://doi.org/10.1016/j.rser.2015.05.020

10. Wild M (2009) Global dimming and brightening: a review.

J Geophys Res 114:D00D16. https://doi.org/10.1029/

2008JD011470

11. Wang L, Kisi O, Zounemat-Kermani M, Salazar GA, Zhu Z,

Gong W (2016) Solar radiation prediction using different tech-

niques: model evaluation and comparison. Renew Sustain Energy

Rev 61:384–397. https://doi.org/10.1016/j.rser.2016.04.024

12. Ndulue E, Onyekwelu I, Ogbu KN, Ogwo V (2019) Performance

evaluation of solar radiation equations for estimating reference

evapotranspiration (ETo) in a humid tropical environment.

J Water L Dev 42:124–135. https://doi.org/10.2478/jwld-2019-

0053

13. Ododo JC, Sulaiman AT, Aidan J, Yuguda MM, Ogbu FA (1995)

The importance of maximum air temperature in the parameteri-

sation of solar radiation in Nigeria. Renew Energy 6:751–763.

https://doi.org/10.1016/0960-1481(94)00097-P

14. Bandyopadhyay A, Bhadra A, Raghuwanshi NS, Singh R (2008)

Estimation of monthly solar radiation from measured air tem-

perature extremes. Agric For Meteorol 148:1707–1718. https://

doi.org/10.1016/j.agrformet.2008.06.002

15. Ododo JC (1997) Prediction of solar radiation using only maxi-

mum temperature and relative humidity: south-east and north-

east Nigeria. Energy Convers Manag 38:1807–1814

16. Rehman S, Mohandes M (2008) Artificial neural network esti-

mation of global solar radiation using air temperature and relative

humidity. Energy Policy 36:571–576. https://doi.org/10.1016/j.

enpol.2007.09.033

17. Kisi O, Alizamir M, Trajkovic S, Shiri J, Kim S (2020) Solar

radiation estimation in Mediterranean climate by weather vari-

ables using a novel Bayesian model averaging and machine

learning methods. Neural Process Lett 52:2297–2318. https://doi.

org/10.1007/s11063-020-10350-4
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