
Citation: Asaad, M.N.; Eryürük, Ş.;
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Abstract: The planning and management of water resources are affected by streamflow. The analysis
of the sustainability of water resources has used well-grounded methods such as artificial neural
networks, used for streamflow forecasting by researchers in recent years. The main aim of this study
is to evaluate the performance of various methods for long-term forecasting from the data of the
mean monthly streamflows between 1981 and 2017 from the Kucukmuhsine station on the Meram
Stream in the Turkish province of Konya. For that reason, the multilayer perceptron (MLP), long
short-term memory (LSTM), and adaptive neuro-fuzzy inference system (ANFIS) artificial intelligence
techniques were employed in this study for the long-term forecasting of streamflow for 12 months,
24 months, and 36 months. The mean absolute error (MAE), root mean square error (RMSE), and
coefficient of determination (R2) were used to evaluate the performance of the models developed
to make predictions using the data from 1981 to 2017, and the Mann-Whitney test was applied to
examine the differences between the actual data from 2018 to 2020 and each model’s forecasted results
for those three years. The LSTM model showed superiority based on the values of R2 (calculated
as 0.730) and RMSE (lowest value of 0.510), whereas the MLP yielded better prediction accuracy
as reflected by the value of MAE (lowest value of 0.519). The ANFIS model did not have the best
prediction ability for any of the criteria. In accordance with the Mann-Whitney test results, LSTM and
MLP indicated no significant difference between the actual data from 2018 to 2020 and the forecasted
values; whereas, there was a significant difference for the ANFIS model at a confidence level of 95%.
The results showed that the LSTM model had a better prediction performance, surpassing the MLP
and ANFIS models, when comparing mean monthly streamflow forecasts.

Keywords: time series; forecasting; artificial intelligence; long short-term memory; adaptive neuro-
fuzzy inference system; multilayer perceptron; Mann-Whitney

1. Introduction

The climate crisis is creating extreme weather conditions, and there is a critical need
to control the balance of water resources to avoid both floods and droughts through the
appropriate management of these resources. One of the most important aspects of these
efforts is the forecasting of streamflow [1]. City planning, strategies for the management of
water resources, the design of hydroelectric projects, and constructive mitigation programs
undertaken to decrease the environmental effects of climate change can all be assisted by
proper streamflow forecasting [2]. Thus, hydrological modeling studies based on flow data
measured in the past are becoming crucial.

Research in this field has increased with the study of different hydrological phenomena
using data-driven models instead of conventional methods thanks to the development of
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artificial intelligence methods [3]. The modeling and optimization of problems in numerous
scientific fields can now be solved using artificial intelligence methods such as artificial
neural networks (ANNs), fuzzy logic (FL), and adaptive neuro-fuzzy inference system
(ANFIS) applications [4–7].

Analyzing past streamflow characteristics using databases could give important in-
formation about future streamflow characteristics. Therefore, using historical data in
studies of hydrological modeling is becoming increasingly important [8]. Correspondingly,
streamflow forecasting using hydrological time series models is growing in popularity [9].

Time series modeling, both for data generation and prediction of hydrological vari-
ables, is an important step in the planning and operational analysis of water resources.
Nonlinear mapping or chaotic mapping among the input and output data is necessary in
time series analysis, because the predicted values are mapped as a function of patterns
detected beforehand [10]. In particular, deep neural networks have been successfully
applied in solving difficult computational problems with remarkably nonlinear relations
between the input and output variables. Conventional machine learning models that are
created with hand-crafted features might not reach the levels of achievement of neural
networks [11]. The ANFIS approach can be considered a union of the ANN and FL meth-
ods. Many researchers have used ANFIS to investigate water resource problems [9,12].
Neuro-fuzzy systems combine the advantages of many different systems into a single
format. They avoid the fundamental problems of fuzzy system design by using the learning
skills of ANNs to generate automatic fuzzy if-then rules. Therefore, neuro-fuzzy systems
are capable of using not only linguistic input from an authority but also measured data
during modeling [2].

Long short-term memory (LSTM) is another recently introduced method that is ac-
cepted as a good alternative approach for modeling complicated hydrological systems, and
it has recently been widely used in making predictions [3]. The LSTM method constitutes
one of the most popular recurrent neural network (RNN) architectures, having memory
cells instead of a traditional hidden layer mode. Storing, writing, and reading data are
facilitated by opening and closing gates in memory cells. The memory cells can be utilized
just as the data stored in computer memory would be [7].

The multilayer perceptron (MLP) is a type of feedforward neural network with one
or more input, hidden, and output layers arranged in parallel. Each layer in the MLP has
many neurons [1]. The backpropagation algorithm (BPA) is the most frequent learning rule
applied for MLP applications when the training set of input and output data is given [13].

Konya, which has 12.2% of total arable land of Turkey, is classified as a second grade
drought region in Turkey [14]. However, the annual precipitation varies over a wide
range seasonally [14]. This situation may cause not only a decrease in water level in dam
reservoirs and lakes but also floods in agricultural fields depending on the season.

The aim of this study is to predict the streamflow time series of Meram Stream using
the LSTM, ANFIS, and MLP methods and compare the results of these three different ANN
methods with the actual streamflow. The comparison of the hydrological predictions was
made based on three performance criteria. The LSTM, ANFIS, and MLP models were
employed for 12 months, 24 months, and 36 months of flow prediction. The Mann-Whitney
test was used to define the difference between the actual and forecasted data. Actual
data obtained from the Kucukmuhsine station on the Meram Stream were used to run
the models.

2. Materials and Methods
2.1. Study Area and Data

The Kucukmuhsine streamflow gauging station, located to the northwest of the Turkish
city of Konya on the Meram Stream, as indicated in Figure 1, was chosen for this study.
The station is located at 37◦55′28′′ N, 32◦16′09′′ E at an elevation of 1261 m. The watershed
of the Meram Stream is 454 km2, and its average flow rate is 1.01 m3/s. Monthly average
streamflow data for 1981–2017 obtained from the General Directorate of State Hydraulic
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Works, including 432 monthly discharge datasets, were utilized for the prediction of
streamflow in this study.
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Figure 1. Study area and location of the streamflow gauging station.

To simulate streamflow to the Kucukmuhsine station on the Meram Stream (Figure 1),
monthly mean discharge data were used. Table 1 provides the essential characteristics of
the training dataset and test dataset, and the time series plot is shown in Figure 2.

Table 1. Statistical attributes of monthly streamflow for training dataset and test dataset (m3/s).

Min. Max. Mean Std. Dev.

Training dataset 0.00 7.18 0.99 1.04
Test dataset 0.04 8.10 1.06 1.30
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For modeling, three different ANN methods were employed. In total, 80% of the data
was used in training, and 20% of the data was used in testing [15,16], as shown in Figure 2.

2.2. Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) can be described simply as models that use data
gathered experimentally or theoretically to make predictions [17]. Because of their adaptive
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properties and ability to recall information in the training process, ANNs can learn to
make predictions [18]. ANNs consist of neurons with connections between them to create
networks, which may include neuron layers, and which determine the behavior of the
networks, as shown in Figure 3 [19]. Feedforward networks and recurrent networks are
two strategies for connecting the neurons within and between layers [20]. In feedforward
networks, information flows in only one direction without feedback [21]. In recurrent
networks, feedback is presented for internal networks with dynamic behavior [21].
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2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Neuro-fuzzy modeling provides ways to apply numerous improved learning ap-
proaches in neural network research to fuzzy modeling or a fuzzy inference system (FIS). A
rule base that consists of a choice of fuzzy rules, a database that identifies the membership
functions (MFs) used in the fuzzy rules, and a reasoning mechanism that executes the
inference procedure on the rules for determining an output are the theoretical components
of the essential structure of the FIS [23].

The ANFIS is an integration of an adaptive neural network and an FIS. Adaptive neural
network learning algorithms define the parameters of the FIS. The Mamdani-Assilian and
Takagi-Sugeno approaches are commonly used in FIS studies [24,25]. In the present study,
the Takagi-Sugeno approach was utilized. The structure of the Sugeno fuzzy model is
illustrated in Figure 4.
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For example, if the two input variables of x and y and the output variable f are included
in the FIS, then, for the first-order Sugeno fuzzy model, a typical rule set consisting of two
fuzzy if-then rules could be considered as follows [26]:
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First rule: if x is A1, and y is B1, then,

f1 = p1x + q1y + r1 (1)

Second rule: if x is A2, and y is B2, then,

f2 = p2x + q2y + r2 (2)

Here, A1, A2 and B1, B2 denote the MFs of inputs x and y, respectively, and p1, q1,
r1 and p2, q2, r2 denote the parameters of the output function. The output f denotes the
weighted mean of the single rule outputs [26].

Every node i in Layer 1 is identified as an adaptive node with node O(i)
1. The node

output O(i)
1 can be indicated by [26]:

O1
i = ϕAi(x) for i = 1, 2 (3)

or
O1

i = ϕBi−2(y) for i = 3, 4 (4)

Here, x (or y) denotes the input to the ith node, and Ai (or Bi−2) denotes a linguistic
label associated with that node.

Layer 2 consists of the nodes labeled ∏, which generate incoming signals and dispatch
the product [26].

O2
i = wi = ϕAi(x)ϕBi(y), i = 1, 2 (5)

In Layer 3, the firing strength of a rule is indicated by each node output. The normal-
ized firing strength is calculated by the nodes labeled N [27].

O3
i = wi =

wi

w1 + w2
, i = 1, 2 (6)

The nodes of Layer 4 are identified as adaptive with node functions [26].

O4
i = wifi = wi(pix + qiy + ri) (7)

Here, wi denotes the output of Layer 3, and pi, qi, and ri denote the parameter set.
The overall output of all incoming signals is calculated by a single node of Layer 5 [26].

O5
i = ∑

i=1
wifi =

∑i wifi

∑i wi
(8)

2.4. Long Short-Term Memory (LSTM) Neural Network

As a type of RNN, the LSTM neural network was developed by Hochreiter and
Schmidhuber [27] to manage the long-term information saved in a network using memory
cells and gates [3].

LSTM networks consist of memory blocks called cells [28]. The cell state and the
hidden state are relocated to the next cell. Sigmoid gates can be used to add to the cell
state or remove data from the cell state. The sigmoid function, which obtains the output of
the last LSTM unit (ht−1) at time t−1 and the current input (Xt) at time t, determines the
operation for identifying and excluding data [28].

ft = σ(Wf[ht−1, Xt] + bf) (9)

Here, σ denotes the sigmoid function, and Wf and bf denote the weight matrices and
bias, respectively, of the forget gate.
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Choosing and storing information using the new input (Xt) in the cell state is the next
step. The sigmoid layer and the tanh layer are formed in this step [28].

it = σ(Wi[ht−1, Xt] + bi) (10)

Nt = tanh(Wn[ht−1, Xt] + bn) (11)

Ct = Ct−1ft + Ntit (12)

Here, Ct−1 and Ct denote the cell states at times t − 1 and t, while W and b are the
weight matrices and the bias of the cell state, respectively.

The output value (ht) is identified depending on the output cell state (Ot) in the last
step [29].

Ot = σ(Wo[ht−1, Xt] + bo) (13)

ht = Ot tan h(Ct) (14)

Here, Wo and bo denote the weight matrices and bias of the output gate, respectively.
The structure of the LSTM neural network is presented in Figure 5.
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2.5. Multilayer Perceptron (MLP) Neural Network

One of the feedforward networks is the MLP, which has one or more hidden layers.
MLP neural networks have three layers of learning networks, which consist of the input
layer, hidden layer, and output layer. The most frequent learning rule for MLPs is the
BPA in the case of a given training set of input and output data [14]. Backpropagation
consists of two steps. The first step is the feedforward step, and the second step is the
backward propagation stage. In the first step, external input information from the input
nodes is propagated forward to compute the output information signal at the output unit.
Thereafter, changes in coupling strengths are generated with respect to the differences
between the information signals computed and observed at the output units [29,30].

If wm represents the value of weight w after iteration m, with hidden node weight wij
or output node weight wjk, then [31]:

wm = wm−1 + ∆wm (15)
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∆wm denotes the change in weight w because of iteration m, and it is computed as:

∆wm = −εdm (16)

Here, ε denotes the parameter that controls the rate of change of the weights. The
value of this parameter is set by the user, and the term dm is given as:

dm =
N

∑
n=i

(
∂E

∂wm
)

n
(17)

Here, N denotes the total number of samples and E denotes the simulation output
error [31].

2.6. Performance Measures for the Application of Models

The performance of the developed models was evaluated based on the three criteria of
coefficient of determination (R2), mean absolute error (MAE), and root mean square error
(RMSE) as follows [3,32,33]:

R2 =

(
∑n

i=1

(
Qi(act) − Qmean(act)

)(
Qi(pre) − Qmean(pre)

))
2

∑n
i=1 (Qi(act) − Qmean(act))

2 ∑n
i=1

(
Qi(pre) − Qmean(pre)

)
2

(18)

MAE =
∑n

i=1

∣∣∣Qi(act) −Qi(pre)

∣∣∣
N

(19)

RMSE =

√
∑n

i=1(Qi(act) − Qi(pre))
2

N
(20)

Here, Qi(act) stands for the actual value, Qi(pre) for the predicted value, Qmean(act) for
the mean value of actual data, Qmean(pre) for the mean value of predicted data, and N for
the number of actual data [3,32,33]. Predictions have a high accuracy when the values of
the RMSE and MAE are close to 0, and the value of R2 is close to 1.

2.7. Application and Comparison of the Models

The ANFIS, LSTM, and MLP models were employed using MATLAB R2019a [33] in
this study. The dataset was divided into two portions for each model. The first 80% of the
data was used for training and the remaining 20% for testing [15,16]. Before the training of
the LSTM model, the data were standardized. The standard deviation and arithmetic mean
were computed, and normalization was performed. Because the variables were generally
calculated in different units, standardization of the data matrix was applied.

Xsta =
X− Xmean

Xstd
(21)

During the development of the models, different amounts of input data were applied,
and the best network was selected according to the performance criteria.

First, the MLP method was applied to the dataset. Before the MLP model was trained,
the data were normalized within the range of 0 to 1. During the training phase, different
interlayers were tried, and three interlayer networks gave good results. The optimum
number of neurons in the hidden layers was chosen by checking the autocorrelation and
partial autocorrelation functions.

The autocorrelation function (ACF) and partial autocorrelation function (PACF) may
be appropriate tools to support and improve the construction of the input layer for ANN
models [34]. The ACF and PACF are used to acquire influential information to build a
model that can provide powerful forecasting.
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The partial autocorrelations for lags 1 and 2 were statistically significant, as shown in
Figure 6a. Except for lag 3, the following lags were almost significant, and it appears that
there were six significantly consecutive lags. The lag connections were weaker at regular
intervals. The correlation weakened during subsequent lags, eventually becoming zero.
The ACF plot is also shown in Figure 6b for a better understanding of the nature of the
data. This diagram shows lags that were equally spaced. Because there appeared to be
a seasonal pattern, the autocorrelations for lags at each seasonal frequency were greater
when compared to other lags. Furthermore, the ACF revealed that the streamflow data
appeared to be yearly in character, as evidenced by the time series. (Figure 6b).

1 
 

 

 
 

 

Figure 6. (a) Partial autocorrelation function diagram of average discharge of Kucukmuhsine,
(b) autocorrelation function diagram of average discharge of Kucukmuhsine.

Several delayed daily mean streamflows were used as input data. Since different input
values must be used to find the best performance according to the delay times in time series
models, different time delays were applied according to the structure of each model. In the
LSTM (Q(1), Q(2), Q(3), . . . , Q(36)) model, 36 months of delays were applied. In the MLP,
on the other hand, the delays were applied in a different order (Q(1), Q(2), Q(3), Q(4), Q(5),
Q(6), Q(7), Q(8), Q(16), Q(20), Q(24), Q(36)).

Finally, 12 months of delays were applied in the ANFIS model (Q(1), Q(2), Q(3), . . . ,
Q(12)). Since a maximum of 12 inputs can be used in the developed ANFIS model, fewer
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delays were applied than in the other two models. Due to the difference in the number of
these time delays, the outputs of the models differed.

The network with 20 neurons in the first layer, 15 neurons in the second layer, and
15 neurons in the third layer provided more successful results compared to the others. The
Levenberg-Marquardt algorithm was chosen as the training algorithm for the MLP model.
The number of iterations was then determined as 1000, and the training of the network was
completed after nine trials.

The network achieved successful performance with the MLP model when values for
1, 2, 3, 4, 5, 6, 7, 10, 16, 20, 24, and 36 months of delay were used as inputs. Therefore, dif-
ferent combinations of inputs were chosen for the MLP model for flow estimation (Table 2).

Table 2. Parameters used in MLP and LSTM models.

Input Model
Configuration Output Activation

Function Iterations/Epochs

MLP

Q(1), Q(2), Q(3),
Q(4), Q(5), Q(6),

Q(7), Q(8), Q(16),
Q(20), Q(24), Q(36)

(12–20–15–15–1) Q(37) Levenberg-
Marquardt

1000
(iterations)

LSTM Q(1), Q(2), Q(3),
. . . , Q(36) (36–50–30–1) Q(37) Bayesian

regulation
500

(epochs)

In the LSTM method, 36 inputs were employed with delay values between 1 and
36 months. The verification of the model sensitivity was provided by a simple data
preprocessing step before utilizing the time series data. The standardization process was
used to scale the data within a certain range. The trial-and-error method was applied to
obtain the optimal structure of the model. In these trials, different sets of hidden layers and
neuron numbers were used. The best network was achieved when the neural network had
two hidden layers with 50 neurons in the first hidden layer and 30 neurons in the second
hidden layer. Various training algorithms were employed to train the LSTM model and
the Bayesian regulation training algorithm was selected. Ultimately, a learning rate of 0.01,
dropout value of 0.4, and 500 epochs were used for the training model (Table 2).

The Neuro-Fuzzy Designer Toolbox of MATLAB R2019a [33] was used to create the
ANFIS model. Normalization of input data was not applied for training in the network,
and the input values were inserted into the ANFIS with delays of 1 to 12 months. The
subclustering method was employed to develop the FIS, and the MF was determined as
Gaussian. For each input, seven Gaussian MFs were executed for all input data, and the
output MF became linear. A hybrid approach for optimization was selected, and training
of the FIS was performed with 500 epochs (Table 3).

Table 3. Parameters used in ANFIS.

Input
Input

Membership
Function

Output
Output

Membership
Function

Epochs

ANFIS Q(1), Q(2), Q(3), . . . , Q(12) Gaussmf Q(13) Linear 500

At the end of the training of the three models, the performance criteria (RMSE, MAE,
and R2) were computed.

3. Results and Discussion

In this section, the streamflow prediction results of the LSTM, ANFIS, and MLP
methods are compared. The performance evaluations of the LSTM, ANFIS, and MLP
models were determined by using three statistical parameters. The RMSE was calculated as
0.510, 0.902, and 0.698 for LSTM, ANFIS, and MLP, respectively; the MAE was calculated as
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0.618, 0.539, and 0.519 for LSTM, ANFIS, and MLP, respectively; and the R2 was calculated
as 0.73, 0.43, and 0.41 for LSTM, ANFIS, and MLP, respectively (Table 4). The results
indicated that the LSTM model outperformed ANFIS and MLP in forecasting the monthly
streamflow time series. When using RMSE as a parameter, the lowest value is the best, and
the highest value is the worst. The LSTM ranked first with the value of 0.510, MLP ranked
second with the value of 0.698, and ANFIS ranked last with the value of 0.902. When the
estimation result was investigated, it was clearly seen that LSTM model represented a
56.54% and 73.07% improvement over the ANFIS and MLP models, respectively.

Table 4. RMSE, MAE, and R2 values for LSTM, ANFIS, and MLP.

RMSE MAE R2

LSTM 0.510 0.618 0.73
ANFIS 0.902 0.539 0.43
MLP 0.698 0.519 0.41

Considering MAE as an evaluation indicator, again the lowest value is the best, and
the highest value is the worst. The MLP was first with a value of 0.519, the ANFIS was
second with a value of 0.539, and the LSTM was last with a value of 0.618. The increase in
the MAE value was observed to be 96.29% of the ANFIS and 83.98% of the LSTM model.

The lowest number is worst, and the highest value is the best when utilizing R2 as an
evaluation criterion. LSTM was first with a score of 0.730, followed by ANFIS with a score
of 0.430, and MLP with a score of 0.410. The comparison of the forecasting results showed
that there was a 30.32% and 21.95% decrease from the LSTM model on the R2 value of the
ANFIS and the MLP, respectively.

All the methods generated predicted values in accordance with the actual data. The
R2 measured as 0.730 and RMSE calculated as the lowest value of 0.510 proves that LSTM
model is advantageous, even though the MAE value of the MLP model results indicated
a higher prediction accuracy with the lowest value of 0.519. For any of the values of R2,
MAE, and RMSE criteria, the ANFIS model did not have the enough prediction ability.

As seen in Figure 7a, Figure 8a, and Figure 9a, the lowest streamflow was observed
to be 0.00 m3/s, and the highest streamflow was observed to be 8.10 m3/s during the
observation period for Kucuhmuhsine station. The lowest streamflow and highest stream-
flow were calculated to be 0.00 m3/s and 7.09 m3/s for LSTM (Figure 7a), 0.00 m3/s and
7.15 m3/s for ANFIS (Figure 8a), and 0.00 m3/s and 4.06 m3/s for MLP (Figure 9a). The
results of the coefficient of determination are shown in Figures 7b, 8b and 9b. It is observed
that the LSTM model provided better results compared to the ANFIS and MLP models
(Figures 7b, 8b and 9b).
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Figure 9. Plot of variance with time (a) and scatter diagram (b) of actual streamflow and streamflow
predicted by MLP.

The long-term predictions for 12 months, 24 months, and 36 months were evaluated
using time series data for each model. The predictions were performed with the time series
process using the outputs of the trained models. The monthly streamflow results forecasted
by the LSTM, ANFIS, and MLP methods for 12 months, 24 months, and 36 months are
shown in Figures 10–12, respectively.



Sustainability 2022, 14, 6319 12 of 19Sustainability 2022, 14, x FOR PEER REVIEW 12 of 19 
 

  

 
Figure 10. Predicted monthly streamflow by the LSTM model for (a) 12 months, (b) 24 months, and 
(c) 36 months. 

  

 
Figure 11. Predicted monthly streamflow by the ANFIS model for (a) 12 months, (b) 24 months, and 
(c) 36 months. 

Figure 10. Predicted monthly streamflow by the LSTM model for (a) 12 months, (b) 24 months, and
(c) 36 months.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 19 
 

  

 
Figure 10. Predicted monthly streamflow by the LSTM model for (a) 12 months, (b) 24 months, and 
(c) 36 months. 

  

 
Figure 11. Predicted monthly streamflow by the ANFIS model for (a) 12 months, (b) 24 months, and 
(c) 36 months. 

Figure 11. Predicted monthly streamflow by the ANFIS model for (a) 12 months, (b) 24 months, and
(c) 36 months.



Sustainability 2022, 14, 6319 13 of 19Sustainability 2022, 14, x FOR PEER REVIEW 13 of 19 
 

  

 
Figure 12. Predicted monthly streamflow by the MLP model for (a) 12 months, (b) 24 months, and 
(c) 36 months. 

Forecasting techniques can be described as the use of historical data to predict the fu-
ture dynamics of time series. However, forecasting each value may not be possible all the 
time. Thus, forecasting is applied in conjunction with predictions of the distributions of the 
next periods. A graphic representation of errors by boxplot is useful to summarize numeri-
cal data. In addition, boxplots can be used to easily represent data structures. One of the 
other crucial capabilities of the boxplot method is identifying outliers among the data.  

Boxplots for the output values of the ANFIS, MLP, and LSTM forecasting methods 
are given below (Figure 13). In Figure 13, the median is represented by a closed circle, the 
mean is represented by a circled plus, and the 25th and 75th percentiles are represented 
by the top and bottom of the box, respectively. The whiskers are 1.5 times of the box height 
away from the median. Outliers are indicated by asterisks.  

 
Figure 13. Boxplots for actual data, and forecasted values of ANFIS, LSTM, and MLP from 2018 to 
2020. (Asterisk denotes outlier values.) 
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(c) 36 months.

Forecasting techniques can be described as the use of historical data to predict the
future dynamics of time series. However, forecasting each value may not be possible all
the time. Thus, forecasting is applied in conjunction with predictions of the distributions
of the next periods. A graphic representation of errors by boxplot is useful to summarize
numerical data. In addition, boxplots can be used to easily represent data structures. One of
the other crucial capabilities of the boxplot method is identifying outliers among the data.

Boxplots for the output values of the ANFIS, MLP, and LSTM forecasting methods
are given below (Figure 13). In Figure 13, the median is represented by a closed circle, the
mean is represented by a circled plus, and the 25th and 75th percentiles are represented by
the top and bottom of the box, respectively. The whiskers are 1.5 times of the box height
away from the median. Outliers are indicated by asterisks.
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Figure 13. Boxplots for actual data, and forecasted values of ANFIS, LSTM, and MLP from 2018 to
2020. (Asterisk denotes outlier values.)
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For the actual data, the median value was the lowest value as 0.431. It was also closer
to the median values of the MLP (0.646) and the LSTM (0.702) than the ANFIS (0.875). The
MLP and LSTM had almost the same median values, and ANFIS had the highest and most
different median value than the two other models. Considering mean values, it can be said
that MLP and LSTM had outputs more similar to the actual data for 2018–2020 than ANFIS.

Based on the location of the boxes, the actual data and the output of the MLP, LSTM
and ANFIS did overlap with one another; so, it can be concluded there was no difference
between the actual data and output of three forecasting models.

In all cases, a positively skewed distribution occurred. The actual data had high
positive skewness considering the outliers as well. The output data of the MLP and LSTM
models represented moderate positive skewness, and the ANFIS output data represented
moderate to high positive skewness.

The boxplots interpreting the differences between the forecasted values obtained with
the ANFIS, MLP, and LSTM methods and the actual streamflow data for 2018, 2019, and
2020 are given in Figure 14. MINITAB 19 [35] was used for this evaluation.
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Figure 14 shows that the differences between the forecasted values gathered by ANFIS,
MLP, and LSTM and actual streamflow data for the years of 2018, 2019, and 2020 had closer
median values of 0.141 for MLP, 0.147 for LSTM, and 0.202 for ANFIS. Considering the
mean values, it can be said that error of each model was similar.

The differences between the values obtained with MLP, LSTM, and ANFIS align
according to the investigation of the box positions; therefore, it can be inferred that there
was no difference in the estimated errors for the three forecasting models.

In all cases, the differences between the values obtained with ANFIS, MLP, and LSTM
did not significantly follow a normal curve with a p-value > 0.05. The differences between
the forecasted values obtained with ANFIS and the actual data represented an approxi-
mately symmetric distribution in contrast to the LSTM and MLP. The differences between
the actual data and the forecasted values gathered by the LSTM and MLP illustrated
significant negative skewness, and they all had outlier values.

Outliers are real extreme data values that may not fully represent the characteristics of
the distribution from which they were sampled.
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For further investigation, outlier plot analysis was performed, as shown in Figure 15.
The outlier plot results revealed that the output of the LSTM and MLP methods had
outliers as also seen in the boxplot, with p-values of 0.007 and 0.03, which are lower than
the significance level. The outlier plot of the output of ANFIS method indicated no outliers,
with a p-value of 0.27, which was greater than the significance level.
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The forecasted values obtained with the ANFIS, MLP, and LSTM forecasting methods
and the actual streamflow data for 2018, 2019, and 2020 were also compared using the Mann-
Whitney test. This statistical test interprets key outputs as the estimation of differences of
the medians by comparing p-values. The Mann-Whitney test results are shown in Table 5.

Table 5. Results for normality testing (Anderson-Darling) and Mann-Whitney tests for the forecasted
values obtained with the ANFIS, MLP, and LSTM methods and actual streamflow data for 2018, 2019,
and 2020.

Method Anderson-Darling
Test Normality Mann-Whitney Test

Actual data from 2018
to 2020 p < 0.005 No -

LSTM, 2018–2020 p < 0.026 No
The difference between the
medians is not statistically

significant at a p-value of 0.570

MLP, 2018–2020 p < 0.005 No
The difference between the
medians is not statistically

significant at a p-value of 0.593

ANFIS, 2018–2020 p < 0.005 No
The difference between the

medians is statistically
significant at a p-value of 0.022

To analyze the normality of each forecast output of the methods, the Anderson–
Darling test was employed. For the LSTM, MLP and ANFIS, the p-values were lower than
0.026, 0.005, and 0.005; respectively. All the outputs of the methods were calculated to be
nonnormal data by rejecting the null hypothesis. (p-value < 0.05). The null hypothesis is
that the data follow normal distribution; the alternative hypothesis is that the data do not
follow the normal distribution.

For investigating the difference between the actual data and each model’s forecasted
results, the nonparametric Mann–Whitney test was applied, because all the outputs of the
methods were found to be nonnormal data (p-value < 0.05).

The Mann–Whitney test represents the difference between the medians of actual data;
the LSTM output was not statistically significant at a p-value of 0.570, and the MLP output
also was not statistically significant at a p-value of 0.593. However, the result of the Mann–
Whitney test for ANFIS showed that the difference between the medians was statistically
significant at a p-value of 0.022.

Xu et al. [36] used the LSTM model for river flow prediction. Using three evaluation
criteria, the LSTM network outperformed numerous hydrological models. Adnan et al. [37]
recommended the LSTM model as a promising alternative for streamflow prediction in
their study. Kilinc and Haznedar [16] suggested that the LSTM-based model had good
accuracy results and outperformed other methods for forecasting of streamflow.

This study indicates that LSTM had better estimation accuracy for the 1981–2017
values. When analyses were performed for 2018–2020 values, the LSTM and MLP showed
similar estimation accuracy.

4. Conclusions

Forecasting is a basic decision-making technique used to minimize risk and reduce
unexpected costs in decision-making processes. Streamflow forecasting is essential in
many important areas such as the design and operation of water infrastructure, dam
planning, flood mitigation, management of water reservoirs, the supply of drinking water,
hydroelectric generation during dry periods, and planning of river transport. Therefore,
the forecasting of streamflow is an essential hydrological research issue.

In the present study, the MLP, LSTM, and ANFIS artificial intelligence models were
employed, and their results were compared for streamflow estimation for the Meram
Stream. The RMSE, MAE, and R2 are among the important criteria to analyze the method’s
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performance, particularly for prediction measures. Hence, the measures indicated above
were utilized to assess the performance of the models used in the present study. To support
the results, the Mann-Whitney test was applied to examine the differences between the
actual data from 2018 to 2020 and each model’s forecasted results for those three years.

The following list of points summarizes the significant findings of this study.
Between 1981 and 2017,

• Based on both R2 and RMSE values, the LSTM model demonstrated superiority for
actual monthly streamflow data;

• The MAE value indicated that the MLP model demonstrated superior prediction accuracy.

Between 2018 and 2020,

• According to the Mann-Whitney test results, there was no significant difference be-
tween the actual data and the forecasted values for the LSTM and MLP models;
however; there was a significant difference for the ANFIS model.

• It can be said that the MLP and LSTM models had outputs more similar to the ac-
tual data than ANFIS based on the box plots considering the mean value, as shown
in Figure 13.

• In terms of mean values, each model’s error appeared to be similar based on the box
plots, as shown in Figure 14.

• According to the analysis of the box positions, the differences between the values
obtained using the MLP, LSTM, and ANFIS models aligned, implying that there was
no difference in the estimated errors for the three forecasting models.

A future study will investigate the effect of factors such as precipitation, evaporation,
etc. Thus, future research directions could be designated by creating multi-input models
and developing hybrid ANN models for the forecasting of streamflow. Moreover, the
different evaluation indicators can be used to find a more consistent forecast accuracy for
future study.
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ANFIS Adaptive neuro-fuzzy inference system
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RMSE Root mean square error
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