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In previous papers, it has been recently de�ned a new class of semigroups based on both Rees matrix and completely 0-simple
semigroups. For this new structure, it has been introduced with certain basic properties and �niteness conditions. emain goal of
the paper is to prove Green’s  eorem for N by indicating the existence of Green’s lemma. We also study generalized Green’s
relation over N and present some new �ndings. In particular, we classify our semigroup N associated with generalized Green’s
relation by constructing good homomorphism.

1. Introduction and Preliminaries

It is good to keep in mind the de�nition of the semigroupN
given in [1], in order to grasp the importance of this paper.
Since this paper is continuation of our work in [1], let us
recall the basic facts regarding the semigroup N.

 e notationMR represents the Rees matrix semigroup
M0[S0; I, J;P], and the notation MC represents completely
0-simple semigroup M0[G0; I, J;P′].

Let us consider the mapping c: (MR ×MC)∗
(MR ×MC)⟶ (MR ×MC)

[(x, y, z), (a, b, c)]∗ [(k, l, m), (r, t, q)] �

x, ypzkl, m( ), 0( ), if pzk ≠ 0 andpcr′ � 0,
0, a, bpcr′t, q( )( ), if pzk � 0 andpcr′ ≠ 0,
x, ypzkl, m( ), a, bpcr′t, q( )( ), if pzk ≠ 0 andpcr′ ≠ 0,
0R, 0C( ), if pzk � 0 andpcr′ � 0,




(1)

for the elements (x, y, z), (k, l, m) ∈MR, and
(a, b, c), (r, t, q) ∈MC. By the operation given in (14), the set
MR ×MC de�nes a semigroup M0[S0, G0;MR,MC;P, P′].

We denote this new semigroup shortly by N.  e details of
the element of N are as follows.

N � Xi,Xk( ){ } �

Xi � 0, Xk ≠ 0(1≤ k≤m) or
Xi ≠ 0, Xk � 0(1≤ i≤ n) or
Xi ≠ 0, Xk ≠ 0(1≤ k≤m) and(1≤ j≤m) or
Xi � 0, Xk � 0.




(2)

Hindawi
Journal of Mathematics
Volume 2022, Article ID 9193446, 7 pages
https://doi.org/10.1155/2022/9193446

mailto:nurten.ozalan@karatay.edu.tr
https://orcid.org/0000-0002-3095-664X
https://orcid.org/0000-0002-3022-350X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9193446


Indeed, every Xi is an element of MR, and Xk is an
element of MC. Moreover, the semigroupN is composed of
the semigroup S and the group G. Furthermore, we can see
the diagram in Figure 1 for N.

*en, we obtained N which satisfies important ho-
mological properties and proved that the spined product
of the (C)-inversive semigroup and the idempotent
semigroup of N is isomorphic to the strictly inverse
semigroup N in [1]. Furthermore, we gave some conse-
quences of the results to make a detailed classification over
N in the same reference. Despite the progress, several
important issues remain to be addressed, which will be
focused on them.

We now discuss a very helpful tool for the study of
monoids/semigroups called Green’s relations. Funda-
mental equivalence relations, R,L,H,D-relations, were
first introduced and studied by Green in 1951. *en, using
these equivalences, Green’s lemma and theorem were
proved. *ese relations have played a main role in the
development of the semigroup theory. Green’s relation is a
subject in its own right, with a substantial body of liter-
ature, see for instance [2]. Especially, Green’s relations
may be used to depict the structure of regular semigroups
(for example, see *eorem 2.1 in [3]). On the other hand,
in [4, 5], the authors studied some Green’s relations for
semigroup and monoid structures. *e Green’s lemma
and Green’s theorem are the natural next steps in these
relations. In [6], the author studied an application for
Γ-semigroups techniques via the Green’s theorem. In the
present paper, our aim is to prove Green’s lemma and
Green’s theorem for N.

On the other hand, in [7], the authors introduced
generalized Green’s relation over a semigroup, namely, the
generalized Green’s relation. Because of this reason,
replacing Green’s relations upon a given semigroup is the
most efficient method to study the generalized regular
semigroups.

Generalized Green’s relation, which is another equiva-
lence class, is crucial for the classification of the semigroup
class such as the abundant and adequate semigroup. One can
regard the abundant semigroup as another kind of gener-
alized regular semigroups. Obviously, an abundant semi-
group is not necessarily a regular semigroup. In abundant
semigroups, a homomorphic image of an abundant semi-
group must not be abundant, and the notions of good
homomorphism for abundant semigroups are introduced in
[8, 9]. Another of our aim is to focus on the generalizations
of Green’s relations on a semigroup N and think of their
applications such as classification of semigroups and good
homomorphism in this paper.

*e paper is structured as follows. We reveal important
results related to Green’s relations which are Green’s lemma
and Green’s theorem for N (Proposition 1 and *eorem 1)
in Section 2. In Section 3, by considering generalizations of
Green’s relations on a semigroup N as mentioned by
Green’s ∗relations (Lemma 5 and*eorem 2). Furthermore,
we make new classifications for N associated with the
abundant semigroup (Corollaries 1 and 2). Finally, we
present other results which build a structure of abundant

and adequate semigroups in terms of good homomorphism
(Corollary 3) in the same section.

2. Green’s Lemma and Green’s Theorem for N

A natural question in the theory of semigroups can be
stated as follows: what kind of newmaterial can be obtained
for a semigroup S by considering the results on Green’s
relation of the same semigroup S? It is well known that
certain equivalence relations L and R for an arbitrary
semigroup S were first introduced by Green [10], in which
those are defined in a very influential method to make a
classification for a new semigroup. As a result of this fact, in
[1], we studied L and R-Green’s relations for N. On the
other hand, we will prove Green’s lemma and Green’s
theorem by developing the results which are obtained in
[1].

Some basic facts about the behavior of these relations are
summarized in the following lemma.

Lemma 1 (see [1]). For [(α, β, c), (x, y, z)], [(α′, β′, c′),
(x′, y′, z′)] ∈N

(i) c � c′, z � z′, βLβ′ and yLy′⇔[(α, β, c),

(x, y, z)]L [(α′, β′, c′), (x′, y′, z′)].
(ii) α � α′, x � x′, βRβ′ and yRy′⇔[(α, β, c), (x, y, z)]

R[(α′, β′, c′), (x′, y′, z′)].

For N1, N2 ∈N, we denote by (N1)L and (N2)L the
L-classes of N containing the elements N1 and N2, re-
spectively. Furthermore, for s1, s2 ∈N, let us assume that
N1 ∗ s1 � N2 and N2 ∗ s2 � N1.

Lemma 2. Let x1 ∈ (N1)L. 2en, (x1 ∗ s1, N1 ∗ s1) ∈L
and x1 ∗ s1 ∈ (N2)L.

Proof. Let us choose an element N1 � [(a, b, c), (d, e, f)]

such that x1 ∈ (N1)L. *is clearly implies that
(x1, N1) ∈L⇒(x1 ∗ s1, N1 ∗ s1) ∈
L⇒(x1 ∗ s1, N2) ∈L⇒x1 ∗ s1 ∈ (N2)L.

Nevertheless, we can present this short proof in the
following alternative way:

For x1 � [(a, b∗, c), (d, e∗, f)], we have b∗Lb and e∗Le

by Lemma 1 via by the definition of Green’s relation [2], and
we certainly have αb∗ � b, βb � b∗ and α′e∗ � b, β′e � e∗

such that α, α′, β, β′ ∈N. *us,

(I, S, J) (I, G, J)

MR MC



Figure 1: *e diagram for the semigroup N.
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x1 ∗ s1 � a, b
∗
, c( 􏼁, d, e

∗
, f( 􏼁􏼂 􏼃∗ a′, b′, c( 􏼁, d′, e′, f( 􏼁􏼂 􏼃

� a, b
∗
pca′b′, c( 􏼁, d, e

∗
pfd′′e′, f􏼐 􏼑􏽨 􏽩.

(3)

Since b∗pca′b′ � βbpca′b′ � βyLy and e∗pfd′′e′ �
β′epfd′′e′ � βlLl, we finally have x1 ∗ s1 ∈ (N2)L. □

Similarly as in Lemma 2, by choosing an element N2 �

[(a, y, c), (d, l, f)] such that x2 ∈ (N2)L, we also obtain the
following preresult.

Lemma 3. Let x2 ∈ (N2)L. 2en, (x2 ∗ s2, N2 ∗ s2) ∈L
and x2 ∗ s2 ∈ (N1)L.

Proposition 1. (Green lemma for N) Let
N1 � [(a, b, c), (d, e, f)] and N2 � [(a, y, c), (d, l, f)] be
R-equivalent elements of the semigroupN, and let s1, s2 ∈N
such that N1 ∗ s1 � N2, N2 ∗ s2 � N1. 2en, the mappings
x1↦x1s1(x1 ∈ (N1)L) and x2↦x2s2(x2 ∈ (N2)L) are
mutually inverse and one-to-one mappings of (N1)L upon
(N2)L and (N2)L upon (N1)L, respectively.

Proof. By Lemmas 2 and 3, since x1 ∗ s1 ∈ (N2)L ve
x2 ∗ s2 ∈ (N1)L, one can obtain the following well-defined
mappings:

Γ: N1( 􏼁L⟶ N2( 􏼁L, Γ′: N2( 􏼁L⟶ N1( 􏼁L,

x1↦x1 ∗ s1, x2↦x2 ∗ s2.
(4)

Now, let us show these two mappings are mutually
inverse. To do that let us take the elements D ∈ (N1)L and

D′ ∈ (N2)L. In fact D ∈ (N1)L implies D � N1, or there
exists α3 ∈N such that α3 ∗N1 � D, and similarly,
D′ ∈ (N2)L implies D′ � N2, or there exists t∗ ∈N such
that t∗ ∗N2 � D′. By considering the compositions

Γ′ ∘ Γ: N1( 􏼁L⟶ N2( 􏼁L, Γ ∘ Γ′: N2( 􏼁L⟶ N1( 􏼁L,

x1↦x1 ∗ s1 ∗ s2, x2↦x2 ∗ s2 ∗ s1,
(5)

of mappings Γ and Γ′,

(i) for the case D � N1, we have (Γ′ ∘ Γ)(D) �

(Γ′ ∘ Γ)(N1) � Γ′(Γ(N1)) � Γ′ (N1⋆s1) � Γ′(N2) �

N2 ∗ s2 � N1 � D, and
(ii) for the other case, we obtain (Γ′ ∘ Γ)(D) �

(Γ′ ∘ Γ)(α3 ∗N1) � Γ′(Γ(α3 ∗N1)) � Γ′(α3 ∗N1⋆
s1) � Γ′ (α3 ∗N2) � α3 ∗N2 ∗ s2 � α3 ∗N1 � D.

*erefore Γ′ ∘ Γ is the identity mapping on (N1)L. In fact,
a quite similar process can be applied on Γ ∘ Γ′ to get the
identity mapping. Hence, Γ and Γ′ are mutually inverse
mappings (in other words, R-class preserving). Hence, Γ is
one-to-one mapping of (N1)L onto (N2)L, and Γ′ is (1 − 1)

mapping of (N2)L onto (N1)L. □

Theorem 1. (Green theorem forN) Let N1 and N3 beR ∘L
equivalent elements of a semigroup N. 2en, there exists
N2 ∈N such that N1RN2 and N2LN3, and hence,
N1s1 � N2, N2s2 � N1, tN2 � N3, t′N3 � N2 for some
s, s′, α1, α2 ∈N. 2e mappings

δ: N1( 􏼁R∩ N1( 􏼁L⟶ N3( 􏼁R∩ N3( 􏼁Lδ′: N3( 􏼁R∩ N3( 􏼁L⟶ N1( 􏼁R∩ N1( 􏼁L,

x1↦α1 ∗x1 ∗ s1 x1↦α2 ∗x1 ∗ s2,
(6)

are mutually inverse, one-to-one mappings of
(N1)R∩ (N1)L and (N3)R∩ (N3)L upon each other.

Proof. For an element x1 ∈ (N1)R∩ (N1)L, clearly, we have
x1 ∈ (N1)R and x1 ∈ (N1)L. *erefore,

x1 ∈ N1( 􏼁R⇒ x1, N1( 􏼁 ∈R⇒N1 ∗ z � x1 andx1 ∗ z′ � N1, for some z, z′ ∈N,

x1 ∈ N1( 􏼁L⇒ x1, N1( 􏼁 ∈L⇒w∗N1 � x1 andw′ ∗x1 � N1, for some v, v′ ∈N.
(7)

After that we can indicate the element N3 as

N3 � α1 ∗N2 � α1 ∗ N1 ∗ s1( 􏼁 � α1 ∗ x1 ∗ z′( 􏼁∗ s1 � α1 ∗ v∗N1( 􏼁∗ z′ ∗ s1 �

α1 ∗ v∗ N2 ∗ s2( 􏼁∗ z′ ∗ s1 � α1 ∗ v∗ N1 ∗ s1( 􏼁∗ s2 ∗ z′ ∗ s1 �

α1 ∗ v∗N1( 􏼁∗ s1 ∗ s2 ∗ z′ ∗ s1 � α1 ∗x1 ∗ s1 ∗ s2 ∗ z′ ∗ s1( 􏼁,

(8)

such that
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α1 ∗x1 ∗ s1 � α1 ∗ N1 ∗ z( 􏼁∗ s1 � α1 ∗ N2 ∗ s2( 􏼁∗ z∗ s1

� α1 ∗N2( 􏼁∗ s2 ∗ z∗ s1( 􏼁 � N3 ∗ s2 ∗ z∗ s1( 􏼁.
(9)

Since s2 ∗ z′ ∗ s1 and s2 ∗ z∗ s1 in elements N, it is
satisfied that N3 � α1 ∗x1 ∗ s1 ∗ (s2 ∗ z′ ∗ s1) and

α1 ∗ x1 ∗ s1 � N3 ∗ (s2 ∗ z∗ s1), and we have
(α1 ∗ x1 ∗ s1, N3) ∈R, so α1 ∗x1 ∗ s1 ∈ (N3)R.

We can also indicate the element N3 as

N3 � α1 ∗N2 � α1 ∗ N1 ∗ s1( 􏼁 � α1 ∗ v′ ∗x1( 􏼁∗ s1 � α1 ∗ v′ ∗ N1 ∗ z( 􏼁∗ s1

� α1 ∗ v′ ∗ N2 ∗ s2( 􏼁∗ z∗ s1 � α1 ∗ v′ ∗ α2 ∗N3( 􏼁∗ s2 ∗ z∗ s1

� α1 ∗ v′ ∗ α2 ∗ α1 ∗N2( 􏼁∗ s2 ∗ z∗ s1 � α1 ∗ v′ ∗ α2 ∗ α1 ∗ N2 ∗ s2( 􏼁∗ z∗ s1

� α1 ∗ v′ ∗ α2 ∗ α1 ∗N1 ∗ z∗ s1 � α1 ∗ v′ ∗ α2 ∗ α1 ∗ N1 ∗ z( 􏼁∗ s1 � α1 ∗ v′ ∗ α2( 􏼁∗ α1 ∗x1 ∗ s1( 􏼁,

(10)

such that

α1 ∗ x1 ∗ s1 � α1 ∗ v∗N1( 􏼁∗ s1 � α1 ∗ v∗ N1 ∗ s1( 􏼁 �

α1 ∗ v∗N2 � α1 ∗ v∗ α2 ∗N3( 􏼁 � α1 ∗ v∗ α2( 􏼁∗N3.

(11)

Since α1 ∗ v′ ∗ α2 and α1 ∗ v∗ α2 in elements N, it is
satisfied that (α1 ∗ v′ ∗ α2)∗ (α1 ∗x1 ∗ s1) � N3 and
(α1 ∗ v∗ α2)∗N3 � α1 ∗x1 ∗ s1, and we have
(α1 ∗x1 ∗ s1, N3) ∈L, so α1 ∗x1 ∗ s1 ∈ (N3)L. Hence, we

obtain α1 ∗ x1 ∗ s1 ∈ (N3)R∪ (N3)L, and the whole process
mentioned above implies that the mapping δ is well defined.

By considering an arbitrary element
x1 ∈ (N3)R∩ (N3)L and applying a similar approach as
above, one can also obtain the mapping δ′ which is well
defined.

Now, suppose that D is an element of (N1)R∩ (N1)L
which gives D ∈ (N1)R and D ∈ (N1)L.

D ∈ N1( 􏼁R⇒ D, N1( 􏼁 ∈R⇒N1 ∗ u � D andD∗ u′ � N1, for some u, u′ ∈N,

D ∈ N1( 􏼁L⇒ D, N1( 􏼁 ∈L⇒v∗N1 � D and v′ ∗ D � N1, for some v, v′ ∈N.
(12)

*en, we have

δ′ ∘ δ( 􏼁(D) � δ′(δ(D)) � δ′ α1 ∗ D∗ s1( 􏼁 � α2 ∗ α1 ∗ D∗ s1( 􏼁∗ s2

� α2 ∗ α1 ∗ v∗N1( 􏼁∗ s1 ∗ s2 � α2 ∗ α1 ∗ v∗ N1 ∗ s1( 􏼁∗ s2

� α2 ∗ α1 ∗ v∗ N2 ∗ s2( 􏼁 � α2 ∗ α1 ∗ v∗N1( 􏼁 � α2 ∗ α1 ∗ D

� α2 ∗ α1 ∗ N1 ∗ u( 􏼁 � α2 ∗ α1 ∗ N2 ∗ s2( 􏼁∗ u

� α2 ∗ α1 ∗N2( 􏼁∗ s2 ∗ u � α2 ∗N3 ∗ s2 ∗ u

� α2 ∗N3( 􏼁∗ s2 ∗ u � N2 ∗ s2 ∗ u � N2 ∗ s2( 􏼁∗ u � N1 ∗ u � D.

(13)

With a similar approach as above, one can further get
(δ ∘ δ′)(D) � D by considering an element
D ∈ (N3)R∪ (N3)L.

*e mapping δ is one-to-one mapping of
(N1)R∩ (N1)L onto (N3)R∩ (N3)L and the mapping δ′ is a
one-to-one mapping of (N3)R∩ (N3)L onto (N1)R∩ (N1)L
so δ′ and δ are mutually inverse.

*e proof is now complete. □

3. Generalized Green’s Relation for N

Let us consider the semigroup S. E(S) is the set of all
idempotents. *e element e ∈ S is called a regular element if
there exists an element x ∈ S such that exe � e and xex � x.
S is said to be the regular semigroup if each element of S is
regular. Green’s relation may be used to describe the
structure of regular semigroups [3]. In fact, the result related
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to regularity overN is given in [1]. However, in here, we will
focus on the generalizations of Green’s relations on a
semigroup N and study their applications such as adequate
and abundant semigroups. Obviously, these types of semi-
groups are natural generalizations of regular semigroups,
and so, it would be appropriate to study N being abundant
and adequate semigroups. We note that the index sets (used
to expose the semigroupN) are composed of one element in
this section.

In [11, 12], Fountain observed that Green’s ∗ relation
(i.e., generalized Green’s relation) may be studied to
abundant semigroups, namely, superabundant semigroups.
Many papers have been dedicated to generalizations and
improvements of Green’s ∗ relation in various contexts
(see, for instance, [7, 13]).

In the following context, we will remind some funda-
mentals which are related to the terminology generalized
Green’s relations over a semigroup.

We consider the semigroup S to be a semigroup, and
α, β ∈ S. By [12], it is known that

αL∗β⇔ u, v ∈ S
1

􏼐 􏼑αu � αv⇔βu � βv􏽨 􏽩, (14)

αR∗β⇔ u, v ∈ S
1

􏼐 􏼑uα � vα⇔uβ � vβ􏽨 􏽩. (15)

S is called the abundant semigroup if each L∗-class
andR∗-class include an idempotent element. Moreover, if
each H∗-class (H∗ � L∗ ∩R∗) of S includes an idem-
potent element, then S is called superabundant. If S is a
superabundant semigroup and E(S) (idempotent semi-
group of S ) forms a subsemigroup of S, then S is called a
cyber-group.

On the other hand, in [14], Fountain introduced that the
most important subclasses of abundant semigroups are
perhaps the classes of adequate semigroups. An abundant
semigroup whose idempotents are commutative is consid-
ered as adequate semigroup. *erefore, an adequate semi-
group in the class of abundant semigroups can be regarded
as a generalization of the inverse semigroup in the class of
regular semigroups (cf. [15]).

If for any x, y ∈ S, xL∗y implies θ(x)L∗θ(y) and
xR∗y implies θ(x)R∗θ(y), then a semigroup homomor-
phism θ: S⟶ T is called good [9].

Definition 1 (see [2]). Let S be a semigroup. An element x in
S is called left cancellative if xy � xz implies y � z for all y

and z in S and right cancellative if yx � zx implies y � z for
all y and z in S. If every element in S is left cancellative, then
S is called a left cancellative semigroup. Similarly, S is called a
right cancellative semigroup if every element in S is right
cancellative.

Now, we will consider L∗ and R∗ equivalences for the
semigroup N and so with the operation ∗ defined in (14).
Before, let us recall the following lemma, which was proved
in ([1], Lemma 3).

Unless stated otherwise, in this whole section, S will
denote the semigroup placed in the Rees matrix semigroup
MR which was constructed for N as presented in the in-
troduction of this paper.

Lemma 4 (see [1]). 2e element [(x, y, z), (k, l, m)] ∈N is
an idempotent ⇔S∪ 0{ }, which is a rectangular band, and
pmk
′ � l− 1.

Lemma 5. For the semigroup S,

(i) if it is a right cancellative semigroup, then every el-
ement of E(N) is R∗ equivalence, and

(ii) if it is a left cancellative semigroup, then every element
of E(N) is L∗ equivalence.

Proof. *e proof will be given for just (i) since the L∗

equivalence case can be obtained quite similarly as R∗

equivalence.
Since index sets are composed of one element, the

structure of two arbitrary elements in E(N) are the form of
[(a, b, c), (a, d, c)] and [(a, s, c), (a, g, c)] (see [1], Lemma 3).
So, we have

a, b′, c( 􏼁, a, d′, c( 􏼁􏼂 􏼃⋆[(a, b, c), (a, d, c)] � a, b″, c( 􏼁, a, d″, c( 􏼁􏼂 􏼃∗ [(a, b, c), (a, d, c)]

⇒ a, b′pcab, c( 􏼁, a, d′pca
′d, c( 􏼁􏼂 􏼃 � a, b″pcab, c( 􏼁, a, d″pca

′d, c( 􏼁􏼂 􏼃.
(16)

Since [(a, b, c), (a, d, c)] is in E(N), by Lemma 4, we will
have

pca
′ � d

− 1
,

d′pca
′d � d″pca

′d⇒d′ � d″.
(17)

In addition, by the assumption, since S is a right can-
cellative semigroup, we have b′pcas � b″pcas, which implies
b′ � b″. So, by taking into account (15), we can write

a, b′, c( 􏼁, a, d′, c( 􏼁􏼂 􏼃∗ [(a, s, c), (a, g, c)] � a, b″, c( 􏼁, a, d″, c( 􏼁􏼂 􏼃∗ [(a, s, c), (a, g, c)]

⇒ a, b′pcas, c( 􏼁, a, d′pca
″g, c( 􏼁􏼂 􏼃 � a, b″pcas, c( 􏼁, a, d″pca

″g, c( 􏼁􏼂 􏼃.
(18)
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All of the preceding progress results in E(N) as R∗

equivalence, as required.
One of the main theorems of this paper is the

following. □

Theorem 2. Let S be a cancellative semigroup. 2en, the set
E(N) is not only an abundant semigroup but also a su-
perabundant semigroup.

Proof. Consider any two idempotent elements
x � [(a, b, c), (a, d, c)] and y � [(a, s, c), (a, g, c)] in E(N).
By Lemma 4, we have pca

′ � d− 1 and pca
″ � g− 1. In addition,

since x and y are idempotents, L∗, R∗ and H∗-classes
consist of idempotent elements. According to Lemma 5 and
the definition of an abundant semigroup, E(N) is the
abundant semigroup. Furthermore, according to the defi-
nition of the superabundant semigroup, E(N) is the su-
perabundant semigroup since H∗-classes consist of
idempotent elements.

*e following consequences are immediate. □

Corollary 1. If N is commutative, then E(N) is an abun-
dant semigroup as well as an adequate semigroup.

Proof. Assume thatN is commutative.*us, the elements of
E(N) are commutative which gives the meaning of an
adequate semigroup since an abundant semigroup whose
idempotents are commutative is actually an adequate
semigroup. □

Corollary 2. For any N, every E(N) is a superabundant
semigroup as well as a cyber-group.

Proof. By *eorem 2, E(N) is a superabundant semigroup
ofN. Furthermore, since E(N) is a subsemigroup ofN, we
reach that it is also a cyber-group.

As we mentioned in Corollary 1, it is well known that
every commutative abundant semigroup N is an adequate
semigroup for N. By utilizing this result, we show that the
homomorphism of abundant semigroups for N is a good
kind of homomorphism. Now, we letNa andNA denote the
abundant semigroup and commutative abundant semigroup
(adequate) for N, respectively.

Our final result in this paper is as follows. □

Corollary 3. If f: NA⟶Na is a homomorphism, then f

is a good homomorphism.

Proof. Let f: NA⟶Na be a homomorphism, then we
have f(A), f(B) ∈Na for A, B ∈NA. Since it is known that
A, B ∈NA by using the definition of adequate semigroup,
we have AL∗B andAR∗B. Furthermore, since
f(A), f(B) ∈Na, we have f(A)L∗f(B) and
f(A)R∗f(B), and so, f is a kind of good
homomorphism. □

4. Summary and Conclusions

Green’s relations are one of the interested areas in the
semigroup theory. *ere are different types of it also, which
are used for Green’s theorem. In this paper, we prove
Green’s theorem over N by using Green’s relations of the
semigroup N. Furthermore, we present the classification of
the semigroup N considering generalized Green’s relation.
Finally, we obtain a new result about good homomorphism.

As future work, we are going to study some other
properties and classification of the special semigroupN over
semigroups.
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