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The elliptic flow, v, of muons from heavy-flavour hadron decays at forward rapidity (2.5 <y < 4)
is measured in Pb-Pb collisions at /sy = 2.76 TeV with the ALICE detector at the LHC. The scalar
product, two- and four-particle Q cumulants and Lee-Yang zeros methods are used. The dependence of
the v, of muons from heavy-flavour hadron decays on the collision centrality, in the range 0-40%, and
on transverse momentum, pr, is studied in the interval 3 < pr < 10 GeV/c. A positive v, is observed
with the scalar product and two-particle Q cumulants in semi-central collisions (10-20% and 20-40%
centrality classes) for the pr interval from 3 to about 5 GeV/c with a significance larger than 3o,
based on the combination of statistical and systematic uncertainties. The v, magnitude tends to decrease
towards more central collisions and with increasing pr. It becomes compatible with zero in the interval
6 < pr < 10 GeV/c. The results are compared to models describing the interaction of heavy quarks and
open heavy-flavour hadrons with the high-density medium formed in high-energy heavy-ion collisions.
© 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Experiments with ultra-relativistic heavy-ion collisions aim at
investigating the properties of strongly-interacting matter at very
high temperatures and energy densities. Quantum Chromodynam-
ics (QCD) calculations on the lattice predict, under these con-
ditions, the formation of a Quark-Gluon Plasma (QGP), where
color confinement vanishes and chiral symmetry is partially re-
stored [1-5]. Heavy quarks (charm and beauty) are created in ini-
tial hard-scattering processes on a time scale shorter than the QGP
formation time. Subsequently, they interact with the medium con-
stituents via inelastic [6,7] and elastic [8-10] processes. Therefore,
heavy quarks are regarded as effective probes of the QGP proper-
ties.

Heavy-quark energy loss due to in-medium interactions can
be studied by means of the nuclear modification factor Raa, de-
fined as the ratio of the yield of heavy-flavour particles measured
in nucleus-nucleus (AA) collisions to that observed in proton-
proton (pp) collisions scaled by the number of binary nucleon-
nucleon collisions. The PHENIX and STAR Collaborations measured,
in central Au-Au collisions at /SNy = 200 GeV, a strong suppres-
sion corresponding to a Raa of about 0.2-0.3 for heavy-flavour
decay electrons at mid-rapidity (y) and transverse momentum
pr > 5 GeV/c [11-17]. A similar suppression was also measured by
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the STAR Collaboration for mid-rapidity D® mesons [18]. A signif-
icant suppression was also observed by the PHENIX Collaboration
at forward rapidity for muons from heavy-flavour hadron decays
in central Cu-Cu collisions at ,/syy =200 GeV [19]. At the LHC,
the ALICE Collaboration reported a similar effect in central Pb-Pb
collisions at ,/syy = 2.76 TeV for D mesons at mid-rapidity [20]
and muons from heavy-flavour hadron decays at forward rapid-
ity [21] in the interval 2 < pt < 16 GeV/c and 4 < pt < 10 GeV/c,
respectively. The CMS Collaboration measured a significant sup-
pression of non-prompt J/¢ from beauty-hadron decays in the
interval 6.5 < pt <30 GeV/c (3 < pt <30 GeV/c) and |y| < 2.4
(1.6 < |y| < 2.4) [22,23]. A first measurement of non-prompt J/¢
by the ALICE Collaboration at mid-rapidity (|y| < 0.8) and in the
interval 4.5 < pt < 10 GeV/c has been recently published [24].

Further insights into the QGP evolution and the in-medium
interactions can be gained from the study of the azimuthal
anisotropy of particles carrying heavy quarks which, in contrast
to light quarks, have experienced the full system evolution. The
study of azimuthal anisotropy is a field of intense experimental
and theoretical investigations (see [25] and references therein). In
non-central collisions, the initial spatial anisotropy of the overlap
region, elongated in the direction perpendicular to the reaction
plane, defined by the beam axis and the impact parameter of
the collision, is converted into an anisotropy in momentum space
through rescatterings [26]. Experimentally, the study of the particle
azimuthal anisotropy is based on a Fourier expansion of azimuthal
distributions given by:
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where ¢ and pr are the particle azimuthal angle and transverse
momentum, respectively. The Fourier coefficients, v,, characterize
the anisotropy of produced particles and W, is the azimuthal angle
of the initial-state symmetry plane for the nth harmonic, intro-
duced to account for the event-by-event fluctuations of the initial
nucleon density profile. The second Fourier coefficient, v;, which
can also be expressed as v, = (cos[2(¢ — W;)]), is named elliptic
flow.

The v, of heavy-flavour hadrons is expected to provide infor-
mation on the collective expansion and degree of thermalization
of heavy quarks in the medium at low pr (pr < 2-3 GeV/c). The
participation of heavy quarks in the collective expansion is ex-
pected to give a positive v, [26]. Moving towards intermediate
pr (3 < pr <6 GeV/c), the v, Fourier coefficient is also expected
to be sensitive to the presence of recombination processes in the
hadronization of heavy quarks [27,28]. At high pt (pr > 6 GeV/c),
the v, measurement can constrain the path-length dependence of
the in-medium parton energy loss, which becomes the dominant
contribution to the azimuthal anisotropy and is also predicted to
give a positive vy [29,30], thus complementing the Rap measure-
ment.

The PHENIX Collaboration reported a positive v, of heavy-
flavour decay electrons at mid-rapidity in Au-Au collisions at
J/SNN = 200 GeV, reaching a maximum value of about 0.15 at
pr = 1.5 GeV/c in semi-central collisions [14,15,31]. A similar
behavior was also observed by the STAR Collaboration [32]. Re-
cently, a v, value significantly larger than zero was measured for D
mesons at mid-rapidity in Pb-Pb collisions at ,/syy = 2.76 TeV [33,
34]. A complementary measurement at the same energy, provided
by the heavy-flavour decay muon elliptic flow at forward rapidity
(2.5 < y < 4), is of great interest in order to provide new con-
straints for models that implement the heavy-quark interactions
with the medium. Finally, the measurement is also important for
the interpretation of the ]J/v elliptic flow results at forward ra-
pidity [35] in terms of a regeneration production from deconfined
charm quarks in the medium.

In this Letter, we present the measurement of the elliptic flow
of muons from heavy-flavour hadron decays at forward rapidity
(2.5 <y < 4) in Pb-Pb collisions at ./s\y = 2.76 TeV recorded
with the ALICE detector. The elliptic flow is measured using dif-
ferent methods: scalar product [36], two- and four-particle Q cu-
mulants [37,38] and Lee-Yang zeros [39-41]. These methods ex-
hibit different sensitivities to flow fluctuations and correlations not
related to the azimuthal asymmetry in the initial geometry (non-
flow effects). The v, coefficient is measured as a function of pt in
the interval 3 < pr < 10 GeV/c and in three centrality classes in
the range 0-40%. The centrality dependence of v, is presented in
the interval 3 < pr <5 GeV/c.

The Letter is organized as follows. The ALICE detector, with an
emphasis on the muon spectrometer, and the data sample are pre-
sented in Section 2. The analysis details, the methods for the v;
measurement, the inclusive muon v, determination, the proce-
dure for the subtraction of the background of muons from decays
of light-flavour hadrons and the study of systematic uncertainties,
are described in Section 3. The v, results for muons from heavy-
flavour decays are presented in Section 4. The v, measurement in
semi-central collisions as well as the published Raa in central col-
lisions are compared to model calculations in Section 5. Finally,
conclusions are given in Section 6.

2. ALICE experiment and data sample

The ALICE detector is described in detail in [42,43]. The ap-
paratus is composed of a set of central barrel detectors (pseudo-
rapidity coverage |n| < 0.9) located inside a solenoid magnet that
generates a field of 0.5 T parallel to the beam direction, a muon
spectrometer (—4 <1 < —2.5') and a set of detectors for event
characterization and triggering located in the forward and back-
ward 7 regions. The muon spectrometer consists of a passive front
absorber made of carbon, concrete and steel, a beam shield, a
3 Tm dipole magnet, tracking chambers, a muon filter (iron wall)
and trigger chambers. The muon tracking system is composed of
five stations, each including two planes of cathod pad chambers,
with the third station inside the dipole magnet. The muon track-
ing system is completed by four trigger planes of resistive plate
chambers downstream of the iron wall, which absorbs hadrons
that punch through the front absorber, as well as secondary parti-
cles produced inside it and low momentum muons (p < 4 GeV/c).

Two scintillator arrays (VO) covering the pseudo-rapidity inter-
vals —3.7 < n < —1.7 and 2.8 <71 < 5.1 are used for triggering,
for collision centrality determination and for beam-induced back-
ground rejection. The Zero Degree Calorimeters (ZDC), located at
114 m from the centre of the detector on both sides, can detect
spectator protons and neutrons and are also used for the offline
rejection of beam-induced background and electromagnetic inter-
actions. The Silicon Pixel Detector (SPD), that composes the two
innermost layers of the Inner Tracking System (ITS), is used for
the interaction vertex reconstruction. The Time Projection Chamber
(TPC), which measures charged-particle tracks with full azimuthal
coverage in || < 0.9, is used in this analysis for the measurement
of the reference particles (Section 3.1).

The results presented in this Letter are obtained from the data
sample recorded with ALICE during the 2011 Pb-Pb run. The data
were collected with a minimum-bias trigger requiring the coinci-
dence of signals in the two VO arrays in synchronization with the
passage of two crossing bunches. In addition, the recorded event
sample was enriched with central and semi-central Pb-Pb colli-
sions by applying thresholds, at the trigger level, on the VO signal
amplitude. The beam-induced background (beam-gas interactions)
was reduced by using the timing information from the VO and
ZDC detectors. Furthermore, a minimal energy deposit in the ZDC
was required to reject the contribution from electromagnetic Pb-
Pb interactions. Only events with a reconstructed primary vertex
within £10 cm from the nominal position of the interaction ver-
tex along the beam direction are analyzed. The Pb-Pb collisions are
classified according to their degree of centrality by means of the
sum of the amplitudes of the signals in the VO detector and the
centrality classes are defined as percentiles of the total hadronic
Pb-Pb cross section [44]. The analysis is carried out in three cen-
trality classes: 0-10% (using the sample with trigger on central
collisions), 10-20% and 20-40% (using the sample with trigger on
semi-central collisions). The analyzed data sample corresponds to
an integrated luminosity of 11.3 pb~! in the 0-10% centrality class
and of 3.5 pb~! in the other two centrality classes.

3. Data analysis

The elliptic flow of muons from heavy-flavour hadron decays,

HF . . . .
vi ", is obtained from the measurement of the inclusive muon

elliptic flow, v‘;, by subtracting the elliptic flow of muons from pri-

T In the ALICE reference frame, the muon spectrometer covers a negative 1 range
and consequently a negative y range. In the following, given that the colliding sys-
tem is symmetric, the results are presented with a positive y notation.
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mary charged pion and kaon decays vé‘ <K (Sections 3.1 and 3.4),
as:

M epemK T K
vy — f Vo

<«HF
leL = 1— f,u,(—r[,l( ’ (2)
where f#<7K is the muon background fraction, defined as the
ratio of the yield of muons from primary charged pion and kaon
decays to that of inclusive muons. The measurement of the v’; <HE
coefficient is carried out in the interval 3 < pt < 10 GeV/c in order
to limit the systematic uncertainty on the subtraction of the muon

background contribution.
3.1. Track selection

The selection criteria for particles of interest, muon tracks, are
similar to those used in the previous analyses of pp collisions at
/s =2.76 TeV and 7 TeV and Pb-Pb collisions at ./Syy = 2.76 TeV
[21,45]. The tracks are required to be within the geometrical ac-
ceptance of the muon spectrometer, with —4 < n < —2.5 and
170° < 0,45 < 178°, where 0,5 is the polar angle measured at the
end of the absorber. In order to improve the muon identification, a
reconstructed track in the tracking chambers is required to match
a track segment in the trigger chambers. This leads to a very ef-
ficient rejection of the background produced by charged hadrons,
which are absorbed in the iron wall. Furthermore, a cut on the
product p - DCA of the track momentum p and distance of clos-
est approach (DCA) to the primary vertex is applied to remove the
beam-induced background tracks and fake tracks coming from the
superposition of several particles crossing the muon spectrometer.
Due to multiple scattering in the front absorber, the DCA distri-
bution of tracks coming form the interaction vertex is expected
to be described by a Gaussian function, its width being depen-
dent on the absorber material and proportional to 1/p. Background
tracks have a very broad distribution in p - DCA and are effectively
rejected by a cut at 60, where o is extracted from a Gaussian
fit to the p - DCA distribution measured in two intervals of 6,ps,
corresponding to different materials in the front absorber. The rel-
ative momentum resolution of reconstructed tracks varies from
about 1% to 4% for tracks with momentum between 20 GeV/c and
100 GeV/c. After the cuts are applied, in the region pt > 3 GeV/c
the residual background to heavy-flavour decay muons consists of
muons from decays of primary charged pions and kaons® and it
amounts to 5-15%, depending on pr and on collision centrality
(Section 3.4).

The mid-rapidity charged-particle tracks used to determine the
flow vector @n or the generating function (Section 3.2) are called
in the following reference particles. They are defined as tracks
measured in the TPC in || < 0.8. These are required to have at
least 70 associated space points out of the maximum of 159, a
x2 per degree of freedom (ndf) for the momentum fit in the
range x2/ndf <2 and a transverse momentum value in the in-
terval 0.2 < pt <5 GeV/c. Additionally, tracks are rejected if their
distance of closest approach to the primary vertex is larger than
3 c¢m in the plane transverse to the beam direction or in the lon-
gitudinal direction.

3.2. Flow analysis methods

The elliptic flow measurement is carried out using various
methods that have different sensitivities to flow fluctuations and

2 Note that the contribution of muons from secondary light hadron decays pro-
duced inside the front absorber is negligible for pr > 3 GeV/c [45].

non-flow effects [46]. Flow fluctuations are mainly due to event-
by-event fluctuations of the initial density profile, while non-flow
effects correspond to correlations not related to the azimuthal
anisotropy in the initial state, such as resonance decays, jets and
Bose-Einstein correlations between identical particles. It is worth
mentioning that, in the present analysis, most of these non-flow
effects are strongly suppressed by introducing an 7 gap between
reference particles and particles of interest [47]. In this analysis,
the scalar product [36], two- and four-particle Q cumulants [37,
38] and Lee-Yang zeros [39-41] methods are employed. The de-
scription of these methods will be limited to the features specific
to the present analysis. The following notations are introduced:

vé‘ G (_HF){SP}, refers to the measurement using the scalar product,

vé‘(’“_HF){Z} and v’z‘(’“_HF>{4} correspond to the ones using the
two-particle Q cumulants and four-particle Q cumulants, while
v’;(“ “HB(1y7-Prod} and v‘z‘(“eHF) {LYZ-Sum} are obtained using
Lee-Yang zeros with product and sum generating functions. The
superscripts @ and pu < HF refer to inclusive muons and muons
from heavy-flavour hadron decays, respectively. It is worth men-
tioning that these methods are more accurate than the standard
event plane method, which yields a measurement lying between
the event-averaged mean value and the root-mean-square value
in the presence of flow fluctuations [48,49]. Moreover, the multi-
particle correlation methods (four-particle Q cumulants and Lee-
Yang zeros) are less affected by non-flow correlations than two-
particle correlation methods, but they cannot be used reliably
when the muon flow magnitude is small and when the num-
ber of muons is small in the selected phase-space region e.g. in
central and peripheral collisions, respectively [37,39]. Under these
conditions, the scalar product and two-particle cumulant methods
provide a v, measurement in a wider centrality range.

The scalar product method [36,48], derived from the standard
event plane technique [48], is based on the measurement of the
flow vector Q, [36] computed from reference particles. In order
to determine the elliptic flow, the Qz vector in a given event is
expressed as:

N N
Qz = (ZcosZgoj,ZsinZgoj), 3)
j=1 j=1

where ¢; is the particle azimuthal angle and N is the multiplicity
of reference particles.
With this method the 2nd harmonic coefficient is given by:

v2{SP} = M .

2,/(Q%- Q%)

where the brackets in the numerator indicate the average over
muons at forward rapidity, in all events. The vector Q; is calcu-
lated from Eq. (3) and the vector i3 ; = (cos 2¢;, sin 2¢;) is the unit
vector of the ith muon. In the denominator, each sample of refer-
ence particles used to compute Q3 is divided into two sub-samples
of same multiplicity in symmetrical # intervals, —0.8 < n < —0.5
and 0.5 < 71 < 0.8, separated by a 1 gap of one unit of pseudo-
rapidity, labeled with the superscripts A and B and the brackets
correspond to the average over events.

The cumulant technique [37,38] is based on a cumulant expan-
sion of multi-particle azimuthal correlations. Different order cumu-
lants have different sensitivities to flow fluctuations. In the present
analysis, two- and four-particle cumulants are used to extract the
muon elliptic flow. The results presented in the following are ob-
tained from a direct calculation of multi-particle cumulants per-
formed by using the Q-cumulant technique [38], which is based
on the moments of the magnitude of the flow vector Q». It is
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worth mentioning that in this approach the cumulants are not
biased by the interferences between various harmonics. The ref-
erence elliptic flow values V, evaluated from the 2nd order cumu-
lant c{2} and 4th order cumulant c»{4} with reference particles
are given by V,{2} = /c2{2] and V,{4} = &/—c,{4], respectively.
Once the reference elliptic flow is estimated, the muon elliptic flow
with respect to the reference elliptic flow is obtained from the 2nd
and 4th order cumulants according to:

dy(2)  dy4)
Vo) =y g

where d,{2} and d»{4} are the 2nd and 4th order cumulants of
selected muons [38].

The Lee-Yang zeros method [39-41] relies on correlations in-
volving all particles in the event. This is the limit of cumulants
when the order of cumulants goes to infinity. The method is based
on the location of the zeros in the complex plane, of a generat-
ing function of azimuthal correlations, which relates the position
of the first minimum of the generating function to the magnitude
of the reference elliptic flow V, defined as:

va{2} =

(5)

M
V2 E<Zcos[2<¢j — w2)1> : (6)
events

j=1

where M is the multiplicity of reference particles and the average
is taken over all events. For this purpose, the following complex-
valued generating function is evaluated as a function of a positive
real variable r and few, typically five, equally spaced reference an-
gles ¥ (LYZ-Prod method):

M
G”(ir)z<]_[(1 + ir cos[2(g); —19)])> . (7)
events

j=1

The first positive minimum of |G? (ir)|, denoted as rg, allows one
to estimate V7, which can be written as V3 = joi/r), where
jo1 =~ 2.405 is the first root of the Bessel function. Once the first
minimum rg is determined, the differential muon elliptic flow
is estimated with respect to the reference flow Vg as detailed
in [41]. Finally, the result is averaged over all ¥ angles. An alter-
native form of the generating function provided with the LYZ-Sum
method is:

M
G (ir) = <exp(ir2cos[2((pj - 19)]>> ) (8)
events

j=1

The version of the method involving a product for the construction
of the generation function (Eq. (7)) was designed to disentangle
interferences between different harmonics, which is not the case
with the generating function using a sum of the individual refer-
ence particle contributions. Both generating functions are used in
this analysis.

Note that, for all methods, autocorrelation effects are avoided
because the particles (muons) used in the determination of the
flow are not included in the estimation of the reference flow.

3.3. Inclusive muon elliptic flow

The elliptic flow of inclusive muons, v’;, is studied with two-
particle correlation methods (scalar product and two-particle Q
cumulants) in the centrality intervals 0-10%, 10-20% and 20-40%.
In the 20-40% centrality interval, the multi-particle correlation
methods (four-particle Q cumulants and Lee-Yang zeros) are also
used.

Several sources of systematic uncertainty affecting the muon el-
liptic flow measurement are considered. These take into account
the changes due to the variations of the reference particle selec-
tion criteria as in [33,34,50], to allow us to check the robustness
of the vé‘ measurement. Since the collision impact parameter dis-
tribution could slightly depend on the observable used for the
centrality determination, a systematic uncertainty is estimated by
repeating the analysis using the number of clusters in the outer-
most layer of the SPD and the number of tracks in the TPC as
centrality estimators, instead of the VO signal amplitude. The sys-
tematic uncertainty due to the effect of TPC tracks from different
Pb-Pb collisions piled-up in the same recorded event is estimated
by applying a tighter cut to remove outliers in the multiplicity dis-
tribution of reference particles. This is done by requiring that the
centrality values determined using the VO signal amplitude and the
number of TPC tracks do not differ by more than 5%. An additional
systematic uncertainty specific to the scalar product is evaluated
by varying the n gap between the two sub-events from 1 to 0.8
n-units (see Eq. (4) and [36]). The various systematic uncertain-
ties are added in quadrature. They tend to increase with increasing
pr (see Fig. 1). A summary of the systematic uncertainties, in the
interval 3 < pr < 4.5 GeV/c, is presented in Table 1.

Fig. 1 shows the pr-differential muon elliptic flow (vg) in the
0-10%, 10-20% and 20-40% centrality classes as obtained using
the various methods. The values of v’; slightly increase from cen-
tral to semi-central collisions and this effect is more pronounced
in the pr interval 3 < pt < 4.5 GeV/c. The two-particle correla-
tion methods (scalar product and two-particle Q cumulants) give
consistent results over the whole pt range, indicating that these
methods have a similar sensitivity to non-flow effects® and in par-
ticular to flow fluctuations. A similar agreement is found when
comparing the multi-particle correlation methods (four-particle Q
cumulants and Lee-Yang zeros) to each other. No significant differ-
ence between the v’; results extracted with Lee-Yang zeros using
either the sum or product generating function is seen, hence in-
dicating that interferences between harmonics are negligible [51].
Moreover, four-particle Q cumulants give comparable results as
Lee-Yang zeros. The four-particle Q cumulants and Lee-Yang ze-
ros are expected to be less affected by non-flow effects than scalar
product or two-particle Q cumulants [52]. However, as mentioned
non-flow effects are expected to be negligible, even with two-
particle correlation techniques, due to the large n between ref-
erence particles and inclusive muons. Finally, the central values of
v‘; obtained with four-particle Q cumulants or Lee-Yang zeros are
systematically smaller than with two-particle correlation methods,
although compatible within uncertainties. Such differences may in-
dicate that initial fluctuations play a role in the development of the
final momentum-space anisotropy.

3.4. Muon background subtraction

The subtraction of the muon background contribution to the
measured vé‘ requires an estimate of the elliptic flow of muons

from charged pion and kaon decays, v’z‘&”’l(, and of the back-

ground fraction, fH<7X (see Eq. (2)). The determination of

the v’z“_ﬂ’K coefficient requires two steps. First, the pr- and

n-differential v, of charged particles measured in || < 2.5 by
the ATLAS Collaboration in Pb-Pb collisions [53] and the pt dis-
tributions of charged pions and kaons measured in |y| < 0.8 by

3 Note that, in this analysis, most non-flow correlations are suppressed, even with
two-particle correlation methods since reference particles and inclusive muons are
separated by at least 1.7 n-units. However, it is worth mentioning that the main
difference between the two methods is the 1 gap between the two sub-samples
used to compute Qz (Eq. (4)) which also allows to partly remove non-flow effects.
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Table 1

Systematic uncertainty sources affecting the inclusive muon elliptic flow measurement in the 0-10%, 10-20% and
20-40% centrality classes for the interval 3 < pr < 4.5 GeV/c. They are given as a percentage of the v, value.

v’; analysis Source Systematic uncertainty (%)
0-10% 10-20% 20-40%
v’; {SP} Reference particles 3 1 3
Centrality selection 6 1 4
TPC pile-up 2 4 2
1 gap 13 1 1
v’z”{Z} Reference particles 13 3 2
Centrality selection 14 3 6
TPC pile-up 8 1 4
vé‘{él} Reference particles 10
Centrality selection 1
TPC pile-up 1
vg{LYZ—Sum} Reference particles 4
Centrality selection 7
TPC pile-up 2
v4 {LYZ-Prod} Reference particles 2
Centrality selection 8
TPC pile-up 2
s« 0.3 e o O3 P e
= [ 0-10% Pb-Pb, \5,,=2.76 TeV ALICE r 10-20% Pb-Pb, \s,,=2.76 TeV ALICE 1
0.2FInclusive p in 2.5<y<4 3 0.2 =Inclusive p in 2.5<y<4 -
0.1F 3 0.1F -
o - o —n—— -
: ~ g ] F :
] e -] Of--mmsmmmmmmmmmees ""ﬂ“" """"""" =
-0.1F 3 0.1 3
F —— v5{SP} . F —— v5{SP} E
—02f — vi{2} . 3 02 —4+— vi{2} 3
F [ Syst. uncertainty ] F [ Syst. uncertainty E
Y] PP I PRI I PP PRI PP P P P )] PRI I PP PPN R PPN N P P I
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Fig. 1. pr-differential inclusive muon v, in 2.5 <y <4 and various centrality intervals, in Pb-Pb collisions at ./Sxy = 2.76 TeV. The symbols are placed at the centre of the
pr interval and, for visibility, the points from two-particle Q cumulants and Lee-Yang zeros with product generating function are shifted horizontally. The vertical error bars
represent the statistical uncertainty, the horizontal error bars correspond to the width of the bin (not shown for the shifted data points) and the open boxes are the systematic
uncertainties. The pr intervals used with the Lee-Yang zeros method are different with respect to the other methods. Upper panels: results from two-particle correlation flow
methods (scalar product and two-particle Q cumulants) in the 0-10% (left) and 10-20% (right) centrality intervals. Lower panels: results in the 20-40% centrality interval
from two-particle correlation flow methods (scalar product and two-particle Q cumulants) and from four-particle Q cumulants (left), and from four-particle Q cumulants

and Lee-Yang zeros (right).

the ALICE Collaboration in pp and Pb-Pb collisions [54,55] are
extrapolated to forward rapidity. Then, the pr distributions of
muons from charged pion and kaon decays, needed to estimate
fremK apd v‘z“_”'K, are generated according to a simulation tak-
ing into account the decay kinematics and the effect of the front
absorber.

The pr- and n-differential elliptic flow of charged particles in
In| < 2.5, vgh, is extrapolated to forward rapidity using:

(9)

where vgh(pT,Z < |n| < 2.5) is the measured charged-particle el-
liptic flow in 2 < || < 2.5 with the event plane method. Since

v (pr, ) = F(n) - vi(pr, 2 < I < 2.5),
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the vgh(pT) measured by the ATLAS Collaboration is affected by
statistical fluctuations, it is assumed that in the interval 10 <
pr <20 GeV/c needed to simulate the decay muons up to pr =
10 GeV/c, v2 remains constant with a value given by the one
measured in the interval 10 < pt < 12 GeV/c. The extrapolation
factor F(n) is calculated by parameterizing the 7n-differential v§h
measured by the ATLAS Collaboration in various pr intervals with
a second order polynomial. In the interval 7 < pt < 20 GeV/c, the
ATLAS vCh does not show a dependence on 7 in || < 2.5. There-
fore, for pr > 7 GeV/c, F(n) is computed as the average between
a flat extrapolation function and the extrapolation factor obtained
with the parabolic parameterization in 4 < pt <7 GeV/c.

The mid-rapidity charged pion and kaon pr distributions mea-
sured in Pb-Pb collisions are extrapolated to forward rapidity using
the same strategy as in [21] and summarized in the following. As-
suming that the nuclear modification factor RXAK of charged pions
and kaons in Pb-Pb collisions does not depend on rapidity up to
y =4 [21,56], the pt distributions of charged pions and kaons at
forward rapidity can be expressed as:

dN7l' K do,n,l(
" PbPb __ pp 7w ,K
Taa) - RaA , 10
dprdy ) dprdy [ (pr)ly=0 (10)

where (Taa) is the average nuclear overlap function in central-
ity classes under study, estimated as described in [57]. The sys-
tematic uncertainty introduced by the assumption on R” K will
be discussed later. The rapidity extrapolation of the mid- rapldity
pion and kaon pr-differential cross sections measured in pp colli-
sions [21,58] is done according to:

d*o ]} d*o ]} —y?
pp _[ pp ] ‘exp< yz), (11)
dprdy dprdy 1,0 207

oy being estimated from Monte-Carlo event generators (see [21]
for details).

The elliptic flow of muons from charged pion and kaon de-
cays, vé‘e” K, in 2.5 <y <4 and in various centrality classes,*
is obtained by means of fast simulations using v§ "(n, pr) given
by Eq. (9) and charged pion and kaon prt dlstrlbutlons as ob-
tained from Egs. (10)-(11). The absorber effect is accounted for
by rejecting the pions and kaons that do not decay within a dis-
tance corresponding to one interaction length from the beginning
of the absorber. The simulation was repeated twice, considering
that charged particles are either all pions or all kaons.

The background fraction, f*<7X is calculated as the ratio of
the pr-differential yield of muons from charged pion and kaon de-
cays in 2.5 < y < 4 obtained in the simulation to the measured
pr-differential yield of inclusive muons.

The systematic uncertainties affecting the estimated v’; <k
are summarized in Table 2. They originate from i) the method used
to measure the charged particle vCh in ATLAS, ii) the n and pt ex-
trapolation of v2 and iii) the treatment of the charged-particle
vgh in the fast simulation procedure. As the event plane method

was used for the vgh measurement in ATLAS, the results range

between the mean ((v§")) and RM.S. (\/((vi")?2)) of the true v&h

values due to fluctuations, depending on the event plane resolu-
tion which varies with the collision centrality [49]. According to a

Monte-Carlo Glauber model [49], the ratio (v%)/(vz) is expected

4 The v‘z‘HT'K of muons from charged pion and kaon decays in the 20-40% cen-
trality class is then obtained from the mean of the charged-particle v, in 20-30%
and 30-40% centrality classes, with an additional systematic uncertainty provided
by the difference with respect to the results in these two centrality classes.

Table 2

Systematic uncertainty sources affecting the estimated v, for the interval 3 <
pt < 10 GeV/c. They are stated as a percentage of the vz value. The given range
reflects the dependence on the collision centrality.

< K

Source Systematic uncertainty (%)
Input v&" bias 9
" 1 extrapolation 9-12
vgh high pr extrapolation 13-15
7 and K in fast simulations <1

to vary from about 1.06 to 1.15. Consequently, a conservative sys-
tematic uncertainty of 15% is applied to account for this bias and
is propagated to v“ 7K The systematic uncertainty due to the 7
extrapolation of v2 is evaluated using several fit functions (first
and third order polynomials, and Gaussian function) in the region
pr <7 GeV/c, and for larger pr values an additional systematic
uncertainty due to the extrapolation procedure is considered. The
latter is determined by comparing the results obtained with the
two extrapolation functions used in the interval pt > 7 GeV/c. The
systematic uncertainty due to the assumption on vgh in the re-
gion pr > 10 GeV/c is estimated by varying v§ " between 0 and
the value in 10 < pt < 12 GeV/c in the fast 51mulat10ns Such un-
certainty affects mainly the high pr region (pr > 7 GeV/c). Finally,
the systematic uncertainty obtained by treating charged particles
separately as pions and kaons is found to be negligible. The vari-
ous systematic uncertainty sources are propagated to the estimated
vy K and added in quadrature.

The systematic uncertainty on f#< 7K detailed in [21], in-
cludes the uncertainty on the generated pt distributions of muons
from charged pion and kaon decays, and the uncertainty on the
measured inclusive muon pr distributions. The former originates
from the input charged pion and kaon distributions, the rapidity
extrapolation and the absorber effect. The systematic uncertainty
on the measured inclusive muon yields contains the systematic
uncertainty on detector response, residual mis-alignment and cen-
trality dependence of the efficiency. This gives a total systematic
uncertainty on f*<7™K of about 21% in the interval 3 < pr <
4.5 GeV/c with almost no dependence on the collision centrality.
Finally, as done for the measurement of the heavy-flavour decay
muon Raa [21], the systematic uncertainty due to the unknown
suppression of charged particles at forward rapidity is calculated
by varying f*<7X from 0 to two times the estimated value.
This corresponds to a variation of R (pT) at forward rapidity

from O up to two times [R7, l((pT)] y=0- ThlS systematic uncertainty
amounts to 10-30% in the interval 3 < pr < 4.5 GeV/c, depending
on the collision centrality and the flow analysis method.

Fig. 2 presents the estimated background elliptic flow (vg A K,
left) and background fraction ( f#< 7K right) as a function of pt in
the 0-10%, 10-20% and 20-40% centrality classes. The open boxes
represent the systematic uncertainties previously discussed, except
for the systematic uncertainty due to the unknown suppression of
charged particles at forward rapidity which is treated separately.

K s .
The estimated v‘“_”’ and f#<7K decrease with increasing pr.

A decreasing trend of the magnitude of v“ K from semi-central

collisions towards central collisions is also observed.
Finally, the systematic uncertainty on the elliptic flow of muons

F . . .
from heavy-flavour decays, vé‘ ' contains two contributions: the

<~ ,K
2
J<HF

and f*<™X propagated
according to the definition of v given in Eq. (2), and the sys-
tematic uncertainty due to the unknown suppression of charged
particles at forward rapidity. The final systematic uncertainty on
v‘zl “HF is obtained by adding in quadrature the two contributions.

systematic uncertainties on v
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,in 2.5 <y <4 and various centrality intervals, in Pb-Pb collisions at ,/sny = 2.76 TeV. The

symbols are placed at the centre of the pr interval and, for visibility, the points from two-particle Q cumulants and Lee-Yang zeros with product generating function are
shifted horizontally. The meaning of the symbols is the same as in Fig. 1. The horizontal error bars are not plotted for shifted data points. The pr intervals used with the
Lee-Yang zeros method are different with respect to the other methods. Upper panels: results from two-particle correlation flow methods (scalar product and two-particle
Q cumulants) in the 0-10% (left) and 10-20% (right) centrality intervals. Lower panels: results in the 20-40% centrality interval from two-particle correlation flow methods
(scalar product and two-particle Q cumulants) and from four-particle Q cumulants (left), and from four-particle Q cumulants and Lee-Yang zeros (right). See the text for

details.

It amounts to about 12%-36% in the interval 3 < pt < 4.5 GeV/c,
depending on the collision centrality and the flow analysis method.

4. Results

Fig. 3 presents the pr-differential elliptic flow of muons from
heavy-flavour hadron decays, vé‘ @HF, calculated with Eq. (2). The
results are shown for the 0-10% (upper, left), 10-20% (upper, right)
and 20-40% (bottom) centrality classes using the same flow meth-

ods as for the measurement of the inclusive muon elliptic flow

(Fig. 1). When comparing the results to those obtained for in-
clusive muons (Fig. 1), one can notice that vg“_HF and vé‘ are
similar due to the small background fraction (5% to 15%) in the pt
interval 3-10 GeV/c. The differences between the various meth-
ods are similar to those discussed for the measurement of the
inclusive muon vé‘ i.e. i) scalar product and two-particle Q cu-
mulants give compatible results, ii) consistent results are also
found with four-particle Q cumulants and Lee-Yang zeros, and
iii) the vg‘ “HE Values extracted from these multi-particle corre-
lation methods are smaller, although still compatible within un-
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not plotted.

certainties, than the ones obtained with two-particle correlation
methods. As mentioned in Section 3.3, such differences are ex-
pected if initial-state fluctuations play a role in the development
of the final momentum-space anisotropy.

A positive v’; “HF is observed at intermediate pr for the 20-40%
and 10-20% centrality classes with a significance larger than 3o
when combining statistical and systematic uncertainties. In the
20-40% centrality class, the values of the significance in the in-
terval 3 < pr <4 GeV/c (4 < pr < 5.5 GeV/c) are 40 (3.20) and
430 (3.80) with scalar product and two-particle Q cumulants,
respectively. In the 10-20% centrality class and in the interval
3 < pr < 4.5 GeV/c, the values of the significance correspond to
4.40 both with scalar product and two-particle Q cumulants. This
behavior results from the interplay between the significant inter-
action of heavy quarks with the expanding medium and the path-
length dependence of in-medium parton energy loss [29,30]. The
v’; “HE 6f muons from heavy-flavour hadron decays decreases with
increasing pt and becomes compatible with zero in the high pr re-
gion.

Fig. 4 shows the centrality dependence of the elliptic flow of
muons from heavy-flavour hadron decays in the interval 3 < pr <
5 GeV/c. It is investigated with scalar product and two-particle Q
cumulants, which can be applied in a wider event-multiplicity (i.e.
centrality) interval compared to multi-particle correlation methods.
A significant decrease of the v, magnitude towards central colli-
sions is observed. This is expected from the decrease of the initial
spatial anisotropy from semi-central to central collisions.

ALICE has measured the elliptic flow of prompt D mesons in
|ly| < 0.8 in three centrality classes in the interval 0-50% with
various two-particle correlation methods [33,34]. Similar trends as
those reported here for muons from heavy-flavour decays are ob-
served, although in different pt and rapidity intervals. In particular,
a positive v, was observed for D mesons in semi-central collisions
in 2 < pt <6 GeV/c with a significance of 5.70.

The positive elliptic flow of muons from heavy-flavour hadron
decays has been observed in a pr interval from 3 to about 5 GeV/c
where the charm contribution is expected to be dominant with
respect to the beauty component according to perturbative QCD
calculations [21]. This measurement supports the interpretation of
the J/¢ positive v, at forward rapidity [35] in terms of a signifi-
cant contribution to J/¢ production from recombination of flowing
charm quarks in the deconfined medium.

5. Comparison with models

The results presented in this publication may constrain mod-
els describing the interactions of heavy quarks with the medium
via elastic (collisional) and inelastic (radiative) processes, and in
particular the parton energy loss dependence on the path-length
within the medium.

The elliptic flow coefficient and the nuclear modification fac-
tor of muons from heavy-flavour hadron decays [21] are com-
pared to the following three models. The MC@sHQ + EPOS trans-
port model [59] treats the propagation of heavy quarks in the
medium including collisional and radiative energy loss, within
a 3 + 1 dimensional fluid dynamical expansion based on the
EPOS model [60,61]. The hadronization of heavy quarks takes
place at the transition temperature via recombination at low pr
and fragmentation at intermediate and high prt. The final-state
hadronic interactions are not included in the model. TAMU [62]
is a transport model including only collisional processes via the
Langevin equation. The hydrodynamical expansion is constrained
by pr spectra and elliptic flow data of light-flavour hadrons. The
hadronization is modeled including a component of recombina-
tion of heavy quarks with light-flavour hadrons in the QGP. The
diffusion of heavy-flavour mesons in the hadronic phase is also in-
cluded. BAMPS [63-65] is a partonic transport model based on the
Boltzmann approach to multi-parton scatterings. It includes colli-
sional processes with a running strong coupling constant. The lack
of radiative contributions is accounted for by scaling the binary
cross section with a correction factor, tuned to describe the nu-
clear modification factor and elliptic flow results at RHIC energies.
Vacuum fragmentation functions are used for the hadronization.

Fig. 5 shows a comparison of the three models with the
measurement of the pr-differential elliptic flow of muons from
heavy-flavour hadron decays in the 20-40% centrality class (up-
per panel) and of the pr-differential nuclear modification factor
of muons from heavy-flavour hadron decays in the 0-10% cen-
trality class [21] (lower panel). In the interval 3 < pt <5 GeV/c,

the BAMPS model describes the vé‘ “HF data within uncertainties,

while the TAMU and MC@sHQ+EPOS models give vﬁ‘ “HE Jalues

lower than the data. The three models describe the v’zl “HF data

at higher pr, although the sizeable experimental uncertainties af-
fect the significance of the comparison. The BAMPS model tends to
slightly underestimate the Raa of muons from heavy-flavour de-
cays in the 10% most central collisions, while the MC@sHQ+EPOS
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Fig. 5. Upper panel: pr-differential elliptic flow of muons from heavy-flavour hadron
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heavy-flavour hadron decays for the centrality class 0-10% from [21] compared to

HF
the same models as for v4".

model tends to overestimate it. The TAMU model describes the
Raa measurement over the entire pr interval within uncertain-
ties. These comparisons indicate that it is challenging to simul-
taneously describe the strong suppression of high-pr muons from
heavy-flavour hadron decays in central collisions and the azimuthal
anisotropy in semi-central collisions. Similar trends are also ob-
served in the mid-rapidity region from the comparison of the Raa
and v, of D mesons with model calculations [34].

6. Conclusions

In summary, we have reported on a measurement of the elliptic
flow of muons from heavy-flavour hadron decays at forward rapid-
ity in central and semi-central Pb-Pb collisions at \/syny = 2.76 TeV
with the ALICE detector at the LHC.

Measurements have been carried out using several methods
which exhibit different sensitivity to initial-state fluctuations and
non-flow correlations. The systematic comparison of scalar prod-
uct, two- and four-particle Q cumulants and Lee-Yang zeros helps
in understanding the processes that build up the observed differ-
ences between two-particle correlation methods and multi-particle
correlation methods and suggests that flow fluctuations are signif-
icant.

The magnitude of the elliptic flow of muons from heavy-flavour
hadron decays increases from central to semi-central collisions and

decreases with increasing pr, becoming compatible with zero at
high pr. The results indicate a positive elliptic flow with the scalar
product and two-particle Q cumulants in semi-central collisions
(10-20% and 20-40% centrality classes) for the prt interval from 3
to about 5 GeV/c with a significance larger than 3o. The elliptic
flow in semi-central collisions and the previously published nu-
clear modification factor in the 10% most central collisions were
compared with transport model calculations. These comparisons
show that a simultaneous description of Ras and v, over the
whole pr interval remains a challenge. The results reported in this
Letter in various centrality classes may provide further important
constraints to the models.
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