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Abstract—In this paper, a novel unsupervised change detection
method is proposed to automatically detect changes between
two cloud-contaminated Landsat images. To achieve this, firstly,
a photometric invariants technique with Stationary Wavelet
Transform (SWT) are applied to input images to decrease the
influence of cloud and noise artifacts in the change detection
process. Then, mean shift image filtering is employed on the
sub-band difference images, generated via image differencing
technique, to smooth the images. Next, multiple binary change
detection masks are obtained by partitioning the pixels in each
of the smoothed sub-band difference images into two clusters
using Fuzzy c-means (FCM). Finally, the binary masks are fused
using Markov Random Field (MRF) to generate the final solution.
Experiments on both semi-simulated and real data sets show the
effectiveness and robustness of the proposed change detection
method in noisy and cloud-contaminated Landsat images.

Keywords—change detection, Landsat images, wavelet, mean-
shift, fuzzy c-means.

I. INTRODUCTION

In remote sensing context, automatic change detection is

the computerised process of identifying differences between

images acquired on the same geographical area, but at different

times [1], [2]. It has been applied in many important remote

sensing applications including environmental measurement,

forestry management, regional mapping, urban monitoring,

and widespread disaster measurement [3]. Amongst all the

remote sensing techniques, Landsat imagery has been in-

tensively employed in change detection problem as it has

provided continuous land surface observations for more than

three decades. However, due to high sensitivity of this remote

sensing technique to noise and meteorology conditions, auto-

matic and robust change detection from moderate resolution

Landsat images remains challenging.

Change detection methods in Landsat images are mostly

based on supervised and unsupervised techniques [4]. How-

ever, the later approach is mostly used in change detection

problem as it does not depend on any prior labelling knowl-

edge. The unsupervised change detection methods mainly

consist of two stages: 1) difference image estimation and 2)

difference image analysis. In the first step, a difference image

is obtained by comparing images using a similarity metric

method such as image subtraction [5], [6], Change Vector

Analysis [7], [8], Correlation Coefficient (CC) [9], Erreur

Relative Globale Adimensionnelle de Synthese (ERGAS) [10],

and structure similarity index [11]. In the second step, the dif-

ference image is analysed to estimate the change detection map

using thresholding methods (i.e. dynamic threshold method

[6] and Otsu’s threshold method [10]), clustering approaches

(i.e. Expectation Maximisation (EM) [12], MRF [13], k-means
[14], and FCM [15]), metaheuristic optimisation algorithms

(i.e. genetic algorithm [5], particle swarm optimisation [16],

and multi-objective evolutionary algorithm [11]) and many

others [17]. In the existing threshold methods, the difference

image is sharply divided by the selected threshold value into

unchanged and changed sets. However, this process is usually

inappropriate as many pixels can be misclassified in the binary

change mask [18]. To solve this issue, many methods based

on the clustering and metaheuristic optimisation have been

proposed. Among all these methods, the FCM algorithm is the

most popular method as: 1) it is robust to ambiguity and can

retain much more information than hard clustering methods

(e.g. k-means) and 2) it requires less computational time than

metaheuristic optimisation-based change detection methods.

However, one of the main drawbacks of the standard FCM

clustering algorithm is that it is sensitivity to noise in images.

Most of the state-of-the-art change detection methods are

performed in spatial-domain, hence they are sensitive to noise

as they directly extract information from the input images. To

solve this issue, different transform-domain change detection

methods have been proposed such as Principle Component

Analysis (PCA) [14], Dual-Tree Complex Wavelet Transform

(DT-CWT) [19], and SWT [20]. Even though these methods

have shown good performance against existence of noise in
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the difference image, they have a common problem which is

that they are sensitive to atmospheric condition changes. In

the existing change detection methods in Landsat images, the

influence of cloud on change detection problem is neglected

as they assume the input images are free from cloud. However,

Landsat images can be captured with different thin cloud(s)

fractions, which can easily cause the change detection methods

generate erroneous information by mapping cloud as change.

In this paper, a novel frequency-domain unsupervised

change detection method is proposed using the SWT and

mean-shift based FCM algorithm to solve the change detection

problem in cloud-contaminated Landsat images with noise

artifacts. The method firstly uses a photometric invariants

technique to convert RGB satellite images into the Hue-

Saturation-Value (HSV) colour space. This is opposed to the

most of the existing methods as they only use the gray/colour

value constancy assumption, such techniques are not robust

enough to withstand the typical atmospheric artifacts occurred

during Landsat acquisitions. Note that, only hue channel of

Landsat images are used as they are invariant under both

shadow and shading (i.e. illumination intensity changes) as

well as highlights and specularities. Second, the SWT is

applied to the hue channel of the images to generate Low-Low

(LL), Low-High (LH), High-Low (HL), and High-High (HH)

sub-band images. This preprocessing strategy aims at making

the proposed method robust to existence of noise and cloud(s)

in the input images and preserving detailed information. Third,

the FCM [21] with the mean shift algorithm is used to improve

the efficiency of traditional FCM. The main reason of using the

mean shift clustering method is that this method decreases the

intensity variations in the image while preserving edges. This

makes the classical FCM robust to noise and/or atmospheric

artifacts and improves its computational time. In this step, four

different binary images are obtained so that, a fusion approach

based on MRF [22] is used to merge binary masks.

II. PROPOSED CHANGE DETECTION METHOD

This section consists of two parts, the first part discusses

about the preprocessing steps that are used to decrease the

influence of cloud and noise artifacts in change detection

process and the difference image estimation. The second

part provides solutions for analysing difference images and

generating final binary change mask. The block diagram of

the proposed method is shown in Fig. 1. The main objective

of this work is to estimate high accurate change detection mask

even when the multispectral Landsat images are captured with

different thin cloud fraction(s) or/and corrupted by noise.

A. Preprocessing

Let Xn
1 and Xn

2 be two Landsat images with size of

h×w pixels, where h and w are height and width of images,
respectively. In this paper, the natural color band combination

(RGB color space) is used so that the images consist of

three spectral bands (n). These images are acquired on the
same geographical area but at two different time instances.

Fig. 1. Block diagram of the proposed method.

Furthermore, they have been registered with respect to each

other [23].

The proposed change detection method is composed of

three preprocessing steps: 1) color space transformation, 2)

generation of sub-band images using the SWT, and 3) image

comparison to compute the difference image.

1) Colour Space Transformation: Many photometric in-

variants techniques including normalised RGB, HSI, HSV,

rφθ, and derivatives of the logarithmized colour channels have
been proposed in literature [24]. Among all the photometric

invariants techniques, the HSV colour transform shows its

robustness to shadow, shading, and specular edges in images

[24]. In the HSV, the hue channel describes the pure colour of

the image, the saturation channel describes how strong color is,

and the value channel determines the image brightness. Among

these three channels, only the hue, h, is shadow-shading-
specular invariant. Hence, in this paper, the hue channel (H)
is only used and formulated as follows:
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where i = {1, 2} denotes the corresponding Landsat image.
2) Stationary Wavelet Transform: In the change detection

problem, the main issue is to accurately classify pixels on the

high frequencies and ignore noise artifacts on input images.

In this paper, the SWT is used to reduce the undesired affects

on images such as noise. Moreover, the main reason of using

the SWT rather than Discrete Wavelet Transform (DWT) is

to minimize information loss due to the downsampling in the

DWT. Here, one level SWT is employed to decompose the

input image into four different sub-band images (Si
LL, S

i
HL,

Si
LH , and Si

HH ).
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3) Image Comparison: After generating the sub-band im-
ages, four difference images Yj are obtained as follows:

Yj =
∣∣S2

j − S1
j

∣∣ (2)

where j = {LL,LH,HL,HH}. The intensities of the differ-
ence image Yj are normalized into [0, 1].

B. Postprocessing: Mean Shift Clustering with Fuzzy C-Means

In most of the state-of-the-art change detection methods,

the raw difference image(s) is directly used in the process

of analysing difference image. Consequently, the clustering

methods including k-means [14] and FCM [25] can lead to

low correct detection rates as pixels from disconnected regions

of the difference image(s) are grouped together if their feature

space overlap. To solve this, the mean shift clustering, which

is an edge-preserving smoothing technique, is used. In this

manner, the noise is removed and meaningful edges preserved.

The mean shift algorithm is a density-based nonparametric

clustering method which is well known for its flexibility and

effectiveness in vision problems. The mean shift algorithm

requires only one parameter to tune which is window size

(bandwidth). In this algorithm, data points (difference image

intensities) iteratively shift to the closest stationary point along

the density gradient. Consequently, this approach can signif-

icantly reduce the intensity variations while preserving high

frequencies. For �1× �2 sample pixels Yj(x, y), y = 1, · · · , �1
and x = 1, · · · , �2, the mean shift vector can be obtained as
follows:

M�(cj) =

�1∑
y=1

�2∑
x=1

Yj(x, y)G
(

cj−Yj(x,y)
�

)

�1∑
y=1

�2∑
x=1

G
(

cj−Yj(x,y)
�

)
︸ ︷︷ ︸

m (cj)

−cj (3)

where cj is the centre of the kernel for each sub-band and
starts at an arbitrary value, m (cj) is the densities estimation
of sample pixels in the neighbourhood of cj , �1 and �2 are
the height and width of the kernel, respectively, � > 0 is
the bandwidth parameter, and G(r) = exp

(− 1
2r
)
indicates

Gaussian kernel function. Note that, the weighted function

G(r) tunes the effect of each intensity value inside the parzen
window based on its distance from cj . Note that the gradient
ascent technique is used to optimize the equation 3. In this

manner, at each iteration cj is updated until ‖M� (cj)‖ < ε,
where ε is a convergence threshold. In this paper, ε is 10−5.

Note that the stationary points obtained via gradient ascent,

represent the modes of the density functions. All the data

points associated with the same stationary point belong to the

same cluster. In this paper, the mean shift approach has been

applied to the four sub-band difference images separately and

thus, four smoothed images are obtained. The next stage of

the proposed approach is to partition each smoothed sub-band

difference image into two clusters using the FCM [21]. In

order to obtain the final binary mask, it is necessary to fuse all

the change masks. To achieve this, Chen et al. [22] propose a

(a) (b) (c)

(d) (e) (f)
Fig. 2. Data sets: (a) and (d) Landsat image X1; (b) and (e) Landsat Image
X2; (c) and (f) ground truth change masks.

(a) (b) (c)
Fig. 3. Synthetic Data sets: (a)-(b) synthetic images that depict the X1 image
with various thin clouds; (c) synthetic image (a) with Gaussian noise.

fusion approach based on the MRF to merge two binary masks

and in this work, the MRF model is adapted to fuse the four

binary masks.

III. EXPERIMENTAL RESULTS

To assess the proposed method, we apply our change

detection method on three semi-synthetic images and two

real medium resolution Landsat data sets. In the real-world

experiments, the first data set shows the water surface of the

lake Milh in 1995 and 2003 (Fig. 2 (a)-(b)) and the second data

set illustrates the north east area of the Caspian sea in 2009

and 2012 (Fig. 2 (d)-(e)). Note that, in the second data set,

an specific region (blue rectangle) is selected for quantitative

measurement. Fig. 2 (c) and (f) show the ground truth change

masks for the Lake Milh data set and the region of interest in

caspian sea data set, respectively. The ground truth masks are

obtained by manually labeling.

To generate the synthetic data sets various shapes and

levels of thin cloud(s) are artificially added in the Fig. 2 (a).

The synthetic data sets are shown in Fig. 3 (a-c). Moreover,

to evaluate the robustness of the proposed method against

existence of noise, the last synthetic image (Fig. 3 (c)) is

corrupted by Gaussian noise with a mean of zero and 0.02
standard deviation.

The proposed change detection method is compared with

DT-CWT-based [19], PCA-k means-based [14], ERGAS-based
[10], and PSO-GA-based [9] change detection methods. Note

that the first compared method is in the frequency domain and

the rest of them are in the spatial domain. In addition, in the

DT-CWT-based and the PCA-k means-based change detection
methods, the input images must be in grayscale space whereas

in the other methods, the input images must be in RGB color

space. The DT-CWT-based and the ERGAS-based change

detection algorithms, are parameter-free methods. In the PSO-

GA and the PCA-k means methods, the parameters which are
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(a) DTCWT (b) PCA-k-means (c) ERGAS (d) PSO-GA (e) Proposed

Fig. 4. Change detection results for the Fig. 2 (d)-(e).

(a) DTCWT (b) PCA-k-means (c) ERGAS (d) PSO-GA (e) Proposed

Fig. 5. Change detection results for the Fig. 2 (b)- Fig. 3 (a).

TABLE I
QUANTITATIVE RESULTS FOR REAL DATA SETS.

Fig. 2 (a)-Fig. 2 (b) Fig. 2 (d)-Fig. 2 (e)
Method PFA PMA PTE PFA

DT-CWT-based 7.85 4.42 5.92 82.51
PCA-k means 6.42 5.96 5.45 68.33
ERGAS-based 9.38 18.83 16.48 12.46
PSO-GA-based 4.36 2.94 3.91 34.26
Proposed Method 4.83 3.05 4.20 0.00

TABLE II
QUANTITATIVE RESULTS FOR SYNTHETIC DATA SETS.

Fig. 2(b)-Fig. 3(a) Fig. 2(b)-Fig. 3(b) Fig. 2(b)-Fig. 3(c)
Method PFA PMA PTE PFA PMA PTE PFA PMA PTE

DT-CWT-based 32.27 10.88 15.02 31.05 9.65 15.02 32.75 11.01 15.14
PCA-k means 28.66 7.93 12.45 25.37 6.55 10.40 28.79 7.93 12.48
ERGAS-based 4.43 21.31 8.53 5.67 15.14 6.64 4.49 21.32 8.61
PSO-GA-based 16.21 4.57 8.25 12.22 4.70 5.86 16.27 4.68 8.34
Proposed Method 4.29 3.86 4.06 5.44 3.98 4.61 4.31 3.86 4.07

given in [9] and [14] are used. In the proposed method, the

bandwidth (�) is the only parameter that must be tuned and

here it is empirically chosen as 1.5. In addition, for quantitative
comparison purposes, three different error measurements such

as False Alarm rate (PFA), Missed Detection rate (PMA), and

Total Error (PTE) [14] are used. Note that only PFA is used

for the second real Landsat data set as there is no changed

pixels in the region of interest.

Figs. 4 and 5 illustrate the qualitative results of the change

detection methods using Fig. 2 (d)-(e) and Fig. 2 (b)- Fig. 3(a),

respectively. According to the qualitative results, it is clear that

the DT-CWT-based method provides the least accurate results

and it is very sensitive to existence of thin cloud in the images.

The PCA-k means-based method shows better performance,
but it still wrongly detects cloud areas mostly as changed

regions. The PSO-GA-based method shows less sensitivity

to thin cloud as it uses CC similarity metric which is less

sensitive to intensity variations. The ERGAS-based method

detects the dense thin clouds as changed areas (see Fig. 4

(c)) and removes image features under the light thin cloud

areas (see Fig. 4-5 (c)). In contrast to all these methods, the

proposed strategy provides promising results and the results

show the robustness of the proposed method to the existence of

thin cloud in images and removes the influence of this artifact

effectively.

The quantitative results for the real and the semi-synthetic

data sets, which are shown in Fig. 2 and Fig. 3, are tabulated

in Table I and II, respectively. For the first real data set,

the quantitative results show that the PSO-GA-based method

provides the best and slightly better results than the proposed

method as it uses optimisation strategy, but at the cost of com-

putational time. On the other hand, the proposed method gives

the better accuracy results than the other change detection

methods. However, when the complexity increases in the input

images (e.g. Fig. 2 (d)-(e) and Fig. 3), the proposed method

gives the most accurate results as the noise and thin cloud have

influence on performances of the other methods. For instance,

using Fig. 2 (b)- Fig. 3 (a) shows that the proposed method

obtains the lowest PFA, PMA and PTE with 4.29%, 3.86%
and 4.06%, respectively. The DT-CWT based method provides
the poorest performance with 32.27%, 10.88% and 15.02% for

the PFA, PMA and PTE , respectively.

There are several reasons that the other methods fail to

resolve the change detection problem between two images

efficiently: 1) The methods use the gray/colour value con-

stancy assumption, which makes them to not be robust to

the atmospheric artifacts. 2) The PSO-GA, PCA-k means and
ERGAS based methods are applied into the spatial domain

which decreases the accuracy of detection near boundaries.

3) The DT-CWT based method uses simple union fusion

based approach and neglects the low sub-band coefficients

which result in increasing the incorrect detection rate. On the

other hand, the proposed method uses different pre-processing

and post-processing strategies than the other methods which

improve the performance and provide the greatest accurate

change detection results. In addition, by comparing the results,

we can conclude that the proposed method provides the best

results as using the hue channel of Landsat images with the

SWT make the proposed method strongly robust to existence

of artifacts. Moreover, the mean shift algorithm does not

permit the FCM algorithm to group together the pixels from

disconnected regions of the difference image.

IV. CONCLUSION

In this paper, an unsupervised change detection method

is proposed to automatically detect changes between two

cloud-contaminated Landsat images. The proposed method is

compared with different change detection methods over real
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and semi-synthetic data sets and the results show that the

proposed method is robust to the Gaussian noise and thin

cloud. This is due to the use of the photometric invariants

technique with the SWT along with the mean shift FCM.
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