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A B S T R A C T

In this paper, the microwave characterization of dielectric materials using open-ended coaxial line probe is
proposed. The measuring cell is a coaxial waveguide terminated by a dielectric sample. The study consists in
extracting the real and imaginary part of the relative dielectric permittivity (ε= ε′-jε'') of the material under test
from the measurements of the probe admittance (Ymes(f)=Gmes(f)+jBmes(f)) on a broad band frequency (f
between 1MHz and 1.8 GHz), hence a direct and inverse problems have to be solved. In order to build a da-
tabase, the direct problem is solved using Finite Elements Method (FEM) for the probe admittance (Y(f)=G(f)
+jB(f)). Concerning the inverse problem, Partial Least Square (PLS) Regression (PLSR) is investigated as a fast,
simple and accurate inversion tool. It is a dimensionality reduction method which aims to model the relationship
between the matrix of independent variables (predictors) X and the matrix of dependant variables (response) Y.
The purpose of PLS is to find the Latent Variables (LV) having the higher ability of prediction by projecting
original predictors into a new space of reduced dimension. The original inverse model has only three predictors
(f, G and B) but is nonlinear, so inspired by the extended X bloc method, more predictors have been created
mathematically from the original ones (for example: 1/f2, B/f2, GB, 1/B, G/f, f2G, fG2B, f2G2B2,… etc) in order to
take into account the nonlinearity, whence the appellation Predictors Generation Partial Least Square Regression
(PG-PLSR). Inversion results of experimental measurements for liquid (ethanol, water) and solid (PEEK
(Polyether-ether-ketone)) samples have proved the applicability and efficiency of PG-PLSR in microwave
characterization. Moreover, the comparison study in the last section has proved the superiority of PG-PLSR on
Multi-Layer Perceptron Neural Network (MLP-NN) in terms of rapidity, simplicity and accuracy.

1. Introduction

Nowadays, measurement of the dielectric and magnetic properties
of lossy solids and liquids becomes more and more interesting. Usually,
material characterization is used in dielectric measurements of biolo-
gical tissues for cancer research, building materials, negative index
materials, electromagnetic shielding and propagation of wireless sig-
nals. Many methods are developed for measuring electromagnetic
permeability and permittivity. These techniques contain free-space
methods, open-ended coaxial-probe techniques, cavity resonators, di-
electric-resonator techniques, and transmission line techniques [1].

A review of extensive research work in the area of microwave
characterization of dielectric materials reveals that the transmission
line reflection method appears to be an efficient and convenient ap-
proach, especially when used with an open-ended coaxial line probe.

This technique is based on inserting a sample of the material to be
tested at the extremity of the coaxial waveguide, and the material
permittivity is then extracted from the measurement of the reflection
coefficient or the measuring cell admittance [2].

Inverse problems for the determination of dielectric materials prop-
erties are primarily solved by iterative methods which involve fast ana-
lytical solutions of the forward problem [3–6]. However physical phe-
nomena are rarely solved by analytical methods hence numerical
solutions became necessary and iterative inversion can became very time
consuming. As a consequence, methods based on artificial intelligence
such as Artificial Neural Networks (ANN) [7,8], Support Vector Machines
(SVM) [9–11] and Adaptive Network based Fuzzy Inference System
(ANFIS) [12] have occurred. Although, these inversion methods give,
after training, a real time response, a prior optimization study is neces-
sary. Concerning ANN, the determination of hidden layers and hidden
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neurons is very important to avoid the over-fitting phenomenon. This
problem is often fixed using Cross Validation (CV) which is a time con-
suming procedure. In addition, it needs the adjustment of the parameters
of the back propagation learning algorithm, and the problem of small
samples impedes the generalization ability of ANN modelling in en-
gineering applications. Regarding SVM, a prior study involving an opti-
mization algorithm is required to determine its hyper parameters. In the
case of ANFIS, first of all, the number of Membership Functions (MF) per
input, the MF type and the parameters of the learning algorithm have to
be fixed. Furthermore, the problem of small samples impedes the gen-
eralization ability of ANN and SVM modelling in engineering applica-
tions [7–11], contrary to ANFIS which needs a relatively small database
(comparable to that used here with PG-PLSR).

Nowadays, electromagnetic characterization of materials has be-
come of strong interest, and finding faster techniques is more and more
occupant for researchers. In this paper, Partial Least Square Regression
(PLSR) as a fast inversion tool is invested. It models the relationship
between a multivariate response and predictors by extracting the Latent
Variables (LV) using the projection into a new space of reduced di-
mension. The forward problem is solved using Finite Elements Method
(FEM) for the complex cell admittance (Y(f)=G(f) + jB(f)) on a
broad-band frequency f (from 1MHz to 1.8 GHz) involving a dielectric
sample of a complex permittivity (ε= ε′-jε'') to build a learning data-
base. Therefore, in the inverse problem the three vectors (f, G and B) are
the predictors, whereas ε′ and ε" are the responses. In order to integrate
the nonlinearity of predictors (f, G and B) compared to responses (ε′ and
ε") and to take into account the possible correlated influence predictors,
additional predictors are generated mathematically from the original
ones (f, G and B) following a technique inspired by the extended X bloc
method [13], i.e. 1/f2, B/f2,G2, fB, 1/f, 1/B, 1/G, B2/G2, f2G, fG2B,
f2G2B2, … etc, whence the appellation Predictors Generation Partial
Least Square Regression (PG-PLSR) appears, hence the problem be-
comes suitable for PLSR known as a powerful method for predicting a
set of dependent variables from a large set of independent variables
(even noisy and highly correlated) [14].

2. Measurement setup and numerical method

The characterization cell, called SuperMit, consists in a junction
between a coaxial waveguide and a circular waveguide which is filled
by the dielectric material under test and short-circuited at its end
(electric wall). In order to study liquids, a coaxial tight window is in-
serted between the two guides. The whole device is connected to a
network analyser (Fig. 1).

The measurement protocol SuperMit was first developed by Belhadj-
Tahar et al. [3] for isotropic and homogeneous dielectrics. The protocol

requires the propagation of a Transverse Electromagnetic (TEM) mode
in the circular coaxial line, from the analyser to the discontinuity (plane
of measurement), where the wave is reflected by the coaxial guide-
circular guide discontinuity. In the case of liquid samples, the permit-
tivity and the thickness of the tight window are selected in such a way
that only incident and reflected TEM modes exist at the interface
coaxial guide-window. In order to avoid a high reflexion at the interface
coaxial guide-window, the real part of window permittivity must be as
low as possible. Meanwhile, to avoid losses in the window, the ima-
ginary part must be also low. Here the probe is held so that the liquid
sample is placed in the upper side to avoid air bubbles effect [7]. This
configuration may be used from low frequencies until 19.6 GHz (cut-off
frequency) using the coaxial waveguide APC7 (inner dia-
meter= 3.04mm, outer diameter= 7mm).

The forward problem is expressed in terms of the electric field E
⎯→⎯

which satisfies the following harmonic wave equation:

jωμ
E jωε E1

⎜ ⎟∇ × ⎛
⎝

− ∇ ×
⎯→⎯ ⎞

⎠
=

⎯→⎯
(1)

whereω is the pulsation, ε ε ε ε jε( ( ))0= ′ − ″ and μ are the permittivity
and the permeability, respectively. ε0 is the permittivity of the free
space, and ε ε,′ ″ are respectively real and imaginary part of the relative
permittivity.

Thanks to the axial symmetry of the system, only an angular sector
(5°) of the geometry is meshed (Fig. 2). Second-order 3D tetrahedral
edge finite elements are used. The system is meshed so that there are at
least 10 elements per wavelengths.

At the input of the coaxial waveguide, a port of excitation was ap-
plied. It allows generating an incident TEM electromagnetic field and at
the same time to absorb the same reflected mode. Perfect electric
conductor (PEC) boundary conditions are applied on the surface of the
waveguide conductors and at the end of the measurement cell, whereas,
a perfect magnetic conductor (PMC) boundary condition is applied to
both symmetry planes. These boundary conditions are given by:

n E 0→ ×
⎯→⎯

= , on conductors.
n E n E0
→ ×

⎯→⎯
= → ×

⎯→⎯
, on the excitation plane with E0

⎯→⎯
a source field.

n H 0→ ×
⎯→⎯

= , on symmetry planes (cutting planes).
The relationship which links the complex admittance Y to the re-

flexion coefficient at the discontinuity Γ is:

Y Y Γ
Γ

G jB1
10= −

+
= +

(2)

where Y0= 0.02S is the characteristic admittance of the coaxial line
(50Ω).

Fig. 1. Measurement setup with SuperMit cell for liquids.
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3. PLSR for inverse problem solving

PLS was initially developed by Wold [15] and became popular in the
fields of chemometrics, physiology, marketing, geophysics, supervision
… etc. PLSR is a technique that combines the main features from Prin-
cipal Component Analysis and Multiple Linear Regressions. The PLSR
model is used to establish a relationship between a predictors matrix X
(x1, x2,…, xP) and a response matrix Y (y1, y2,…, yR), where: xP is the Pth

independent variable put in the form of a column vector of N observa-
tions, yR is the Rth dependent variable put in the same form as xP.

The prediction is achieved by extracting from X a set of orthogonal
(uncorrelated) components called latent variables (or principal com-
ponents) which have the best predictive power by maximizing the
covariance between the projection of the predictors in a subspace of
reduced dimension and the responses. In other words, PLS finds the best
axes that simultaneously explain variations in X and predict Y [16,17].

The power of PLSR is seen when dealing with multivariate response
problems (Y is a multidimensional output matrix) with noisy data and
correlated independent variables (X) under limited number of ob-
servations (even less than predictors number) [14,18,19]. Additionally,
it automatically performs variable selection that is easy to implement,
statistically very efficient and computationally very fast, which renders
it practical for application to large data sets [20].

The model accuracy is strongly depending on the latent components
retained. When the latter is insufficient, some useful information will be
lost (under-fitting). On the other hand, if we take an over-many number
of components, the model risks over-fitting phenomena and brings an
unnecessary noise signal which affects the robustness of the model
[19,21]. Usually, CV is adopted to fix this problem [22].

Theoretically, PLS method assumes the existence of a linear re-
lationship between independent variables X and dependant variables Y.
Let us consider a given predictors matrix X (N× P) of N observations
parameterized by P parameters (inputs) and an output variable Y
(N× R) assumed to be both fitted by a linear combination of a reduced
number n of LV.

PLS decomposes X and Y into the following form [16,20]:

X TP E′= + (3)

Y TQ F′= + (4)

In this PLS formulation, the predictors and responses are controlled
by a single score matrix T, just such formulation is suitable for re-
gression problems where the predictors are high dimensional but the
response is low dimensional (R≪ P) or even univariate (R=1).Where
T is an (N× n) matrix of the n extracted score vectors (components,
latent vectors) for both predictors and responses, the (P× n) matrix P
and the (R× n) matrix Q represent matrices of loadings, and the
(N× P) matrix E and the (N× R) matrix F are the matrices of residuals.

The first LV (first column of T) t1=Xr1 is extracted by maximizing
r'1X'YY'Xr1 with the constraint ||r1||= 1. This leads to calculate the
dominant eigenvector r1 of the matrix X'YY'X. In the same manner, the
second LV (second column of T) t2=Xr2 is determined by maximizing

r'2X'YY'Xr2 with the double constraint ||r2|| = 1 and mutually ortho-
gonal score vectors t'2t1= 0.

The procedure is repeated until extracting all LV: tk=Xrk
(1 < k < n), and the weight matrix R constituted of vectors rk is used
to establish the projection of X into the new space of reduced dimen-
sion: T=XR. After that, the loading matrix Q is computed using an
ordinary least squares regression of Y on T: Q = (T'T)−1T'Y.

Finally, the complete PLSR model can be established from equation
(4) assuming that the error projection is minimum (close to zero) so
that the residual matrix (F) is negligible as:

Y=XBPLS + F (5)

with BPLS=RQ′ is the PLS regression coefficient matrix of P+1 rows
and R columns.

There are a number of algorithms proposed for the practical esti-
mation of PLS coefficients (tk, rk, … etc) such as SIMPLS and NIPALS. In
the present work, the SIMPLS algorithm is used since it ensures lower
computational load and faster convergence [23,24].

Usually, the number of extracted score vectors n is limited by the
convergence criterion of the iterative procedure. In this paper, the
maximum number of LV (n) is chosen to be the same as the number of
predictors (P) and the inversion of experimental measurements will be
done using an optimal number of LV fixed by CV procedure.

4. Database generation and preprocessing

The purpose of this paper is to elaborate an inverse model based on
PLSR which links the complex permittivity of the sample under test to
the probe admittance measurements. Therefore a database is created by
solving numerically (FEM) the forward problem to get the measuring
cell admittance (Y(f)=G(f)+jB(f)) in function of frequency (f) for a
given material of a complex relative permittivity: ε′-jε''. Consequently,
PLSR inputs are G, B and f, outputs are ε′ and ε''. Database is created by
sweeping all possible values of the relative dielectric permittivity of the
sample under test, whereas the measurement frequency is from 1MHz
to 1.8 GHz. The learning set elements (ε′, ε'') are selected in such a way
that they are uniformly distributed on the domain of interest, while the
frequency points are distributed following to a logarithmic law. Before,
entering the database generation routine, all the N values of the gen-
erated vectors ε′, ε'' and f are permuted randomly.

Two databases are created; one to elaborate a PLSR model able to
predict the permittivity of liquid samples (ethanol and water) by sol-
ving the direct problem involving the SuperMit cell with coaxial tight
window, and another for solid samples (SuperMit cell without coaxial
tight window). For liquid samples, the database is created by varying ε′
between 1 and 100, whereas ε" is from 0 to 100. In the case of solid
samples, the material under test (PEEK) has a low relative permittivity
(especially for imaginary part), consequently, a denser distribution of
the examples is required, so the permittivity range covered by the data
set is reduced (1≤ ε'≤ 10 and 0≤ ε"≤ 10).

The procedure of database generation is illustrated by Table 1.

Fig. 2. SuperMit measuring cell for liquids, (a) 2D geometry, (b) cut of the meshed geometry.
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Matrices X and Y are written as follows:

X Y

f G B
f G B

f G B

ε ε
ε ε

ε ε

. . .
. . .. . .

"
"

. .

. .. .
"N N N

N N N N

1 1 1

2 2 2

( 3)

1 1

2 2

( 2)

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

′
′

′

⎤

⎦

⎥
⎥
⎥
⎥
⎥

× ×

Where N is the number of observations (examples).
Inputs and outputs of the databases present a great difference in

numerical values; G and B are very low, f is very high whereas ε′ and ε"
are middle values. To avoid the impact of numerical representation and
make each variable to play the same role, each variable is scaled to unit
variance by dividing them by their standard deviations, and centred to
zero mean by subtracting their averages (for all columns of X and Y).

5. Predictors Generation Partial Least Square Regression (PG-
PLSR)

PLS is particularly useful when predicting a set of dependent vari-
ables from a (very) large set of independent variables (predictors) [18].
The aim of PLS is the dimensionality reduction by iterative deflation. In
other words, replacing correlated predictors by some LV which max-
imize the covariance with Y. Given the nonlinear relationship between
the inputs (f, G and B) and the outputs (ε′ and ε"), it is obvious that a
linear model like PLSR is unable to fill this task with these three input
variables. So, the use of a non-linear PLSR model is obligatory.

There are lot of methods to integrate the non-linearity in PLSR
[25–28]. In this paper, a technique inspired by the extended X bloc
method is used. Proposed by Berglund and Wold [13], this method
consists of expanding the predictors matrix X with higher-order terms,
e.g. quadratic, cross-product and sometimes cubic terms. The expanded
set of X-variables is then used as predictors of Y and the model is fitted
by ordinary PLSR. Since our problem has only three predictors (f, G and
B), the extended X bloc method has led to poor results.

Now the idea is to expand the X bloc differently, where the number
of predictors (columns of X) is raised mathematically by adding new
combinations of original inputs (f, G and B), in order to create a model
able to take into account the non-linearity and the possible correlations
between predictors. Therefore, the appellation PG-PLSR appears.

Each column vector x{ }m m
P

1= of the new matrix of predictors is
written as follows:

x f G B i j k

i j k

, 2, ..., 2, 0, ..., 2,

0, ..., 2, (except the combination when 0)
m

i j k= = − =

= = = = (6)

Consequently, a total of 44 new predictors is created. For ex-
ample:1/f2, B/f2, B2/f2, …, G2, B2, fB, …, 1/f, 1/B, 1/G, …,B2/G2,f2G,
fG2B, …,f2G2B2.

Now, the new matrix of predictors X takes the following form (Y
keeps the same shape):

X
f B f
f B f

f B f

B
B
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G
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f G B f G B
f G B f G B

f G B f G B
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⎢
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⎥
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⎥
⎥
⎥

×

6. Implementation of PG-PLSR

Before implementing the PG-PLSR, the data set is randomly divided
into two different subsets; a calibration set (2/3) used for developing
the calibration model and performing the CV, and a prediction (test) set
(1/3) used for assessing the performances of the PG-PLSR model [29].

The calibration set is divided into 10 equal subsets. The PG-PLSR
model is implemented for different numbers of LV for 10 times invol-
ving 9 subset as training set and checked by the 10th one (validation
set) until all subsets were left out at once. Therefore, 180 examples are
used for training, 20 for validation and 100 for testing. The optimal
number of LV is the one corresponding to the min average (on 10
subsets) of the Cross Validation-Root Mean Squared Error (CV-RMSE)
computed on the validation set, or the one after which the CV-RMSE
does not show a significant decrease. Besides the Root Mean Squared
Error (RMSE) (Equation (7)) which indicates the accuracy of the pre-
diction, the performance of the regression methods is also measured by
the coefficient of determination R2 (Equation (8)) quantifying the
strength of the model [30].

RMSE
N

y y1 ˆ
i

N

i i
1

2∑= −
= (7)

R
y y y y

y y y y

( ( )( ˆ ˆ ))

ˆ ˆ
i
N

i i i i

i
N

i i i
N

i i

2 1
2

1
2

1
2=

∑ − −

∑ − ∑ −
=

= = (8)

whereyi is the value of material properties, ŷi is the value of the PG-
PLSR prediction, yi and ŷi are the mean of yi and ŷi respectively and N is
the number of examples in the data set.

In what follows, we define: the Root Mean Squared Error of
Calibration (RMSEC), the Root Mean Squared Error of Prediction
(RMSEP), the determination coefficient of calibration (R2

cal) and the
determination coefficient of prediction (R2

pred). Good results means a
very low RMSEP and R2

pred being approximately one.

7. Results and discussions

7.1. Application on simulated data

As discussed previously, latent component number has a crucial role
on the accuracy of PG-PLSR model. Fig. 3 shows the average CV-RMSE
evolution on the 10 validation sets in function of the number of LV
retained using the database dedicated for liquid samples (curve with *)
and the one for solid samples (curve with circles). Following this graph,
26 and 29 components have been taken to provide simultaneously ε′
and ε'' (R=2) for solid and liquid samples, respectively. Beyond these
numbers, the two models enter clearly in the over-fitting phenomenon.
In addition, it can be observed the high level of prediction (very low
CV-RMSE) reached with reduced number of LV.

In order to illustrate the choice of LV number, the ratio of the
variance of Y dividing the one of its PLS approximation (TQ′), i.e. Var
(TQ′)/Var(Y), in function of the number of LV retained is shown in
Fig. 4. The graph presents two similar curves showing that the max-
imum ( 100%)≅ of the explained variance in Y is widely explained by the
LV retained, before, using CV procedure for liquid (29 LV) and solid (26
LV) samples, and more than 97% of the variance is explained by the
first five LV for both cases. Moreover, from Fig. 5, the explained var-
iance in X (Var (TP′)/Var (X)) realized by PLS analysis has reached its

Table 1
Procedure of database generation.

No of xample Inputs of the direct problem Outputs of the direct problem

ε′ ε″ f G B

1 ε 1′ ε 1″ f1 G1 B1

2 ε 2′ ε 2″ f2 G2 B2

… … … … … …
… … … … … …
N ε N′ ε N″ fN GN BN

outputs of the inverse problem Inputs of the inverse problem
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maximum ( 100%)≅ using the optimal number of LV for both cases,
beyond this number the contribution of high ranked components is
negligible and they could be largely corrupted by noise when con-
sidering measurements. Usually, this kind of figure gives an idea of the
LV which can be reasonably extracted with the PLS procedure, contrary
to Fig. 4 which indicates the appropriate number of LV required for
measurements inversion.

In order to assess the performances of the PG-PLSR models, these
latter is applied to predict the permittivity values included in the test
set for liquids and solids. In Figs. 6 and 7 the predicted values of the
permittivity (outputs of PG-PLSR model) is depicted in function of the
desired ones (true values) for real and imaginary parts. The points in
each figure represent a straight line with a slope of one, which means
they match well with a function of equation: y yˆ = (estimated permit-
tivity= desired permittivity). Moreover, the RMSEP and R2

pred calcu-
lated on the test sets (Table 2) indicate the very good accuracy ob-
tained. In addition, some researchers consider a good model when
RMSEC and RMSEP are very closes which is the case here [29].

Table 2 summarizes the performances of each model.

7.2. Application on experimental data

Since the PG-PLSR model has proved its accuracy on simulated data,
experimental data can be inverted. Measurements have been carried out
by using an impedance analyser Agilent 4291Aon a dielectric sample
whose dielectric characteristics are known. The coaxial guide is an
APC7 standard (a= 3.5mm, b=1.52mm). The measurement fre-
quency band is from 1MHz to 1.8 GHz. The thickness of the sample
under test is 13.8 mm for liquids and 0.7mm for solids. The tight
coaxial window used to characterise liquids (ethanol and water) is
made of Plexiglas and has a thickness of 0.82mm and a relative di-
electric constant of 2.7. Fig. 8 shows the experimental measurements of
the real (Gmes) and imaginary part (Bmes) of the measuring cell ad-
mittance with the operating frequency fmes for ethanol, water and
PEEK. To avoid contact effects the solid samples are metallized on
contact surfaces with line conductors.

Fig. 3. The average of RMSE on the validation sets in function of the number of PLS components.

Fig. 4. Percentage of the variance of Y explained by the PLS analysis.
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Fig. 5. Percentage of the variance of X explained by the PLS analysis.

Fig. 6. Comparison between the permittivity provided by PG-PLSR and the permittivity contained in the test set (data base dedicated for liquids), (a) real part ε′, (b)
imaginary part ε".

Fig. 7. Comparison between the permittivity provided by PG-PLSR and the permittivity contained in the test set (data base dedicated for solids), (a) real part ε′, (b)
imaginary part ε".
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It should be noticed that the matrix of predictors resulting from
measurements (Xmes) has gone through the same transformation as
matrix X of simulated data (discussed in section 5). Hence, it changed
from 3 to 44 centred and normalized predictors xmes (columns of Xmes):

x f G B i j k, 2, ..., 2, 0, ..., 2 and 0, ..., 2mes
j

mes
k

mes mes
i= = − = = (9)

Here again, the combination when i= j= k=0 is excluded.
Now, the new matrix of experimental predictors Xmes has the fol-

lowing form:
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f B f
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mes mes mes Nmes Nmes

2
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2
1

2
2

2
2
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1
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( 44)

=

⎡
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⎢
⎢
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⎤

⎦

⎥
⎥
⎥
⎥
⎥

×

Where Nmes is the number of measurement frequencies.
The reason why indexes j and k begin from 0, in contrary to index i,

is to avoid big values of predictors when dividing by Gmes
2, Gmes, Bmes

2

and Bmes during the phase of predictors generation (Equations (6) and
(9)) especially in the case of PEEK which is known as a lossless material
(G nearly null), hence reduced sizes of predictors matrices and less
number of LV to be computed, so PG-PLSR model becomes simpler and
faster. Notice that all these 44 predictors are multiplied by BPLS to get
the measurements inversion: Ymes=XmesBPLS + F, regardless the op-
timal number of LV retained by CV.

Fig. 9 shows the inversion results of experimental measurements
using PG-PLSR for ethanol, water and PEEK besides those of a model-
based iterative inversion. This last method consists in inserting a direct
model in an iterative procedure. First, from a couple (ε′, ε") taken ar-
bitrary, the cell admittance is calculated analytically according to the
mode-matching method [3,4]. After that, an iterative method derived
from the gradient method [5,6] is used to reduce the difference between
the measured admittance and the calculated one. Finally, the couple (ε′,
ε") that give the smallest difference is retained as solution for the
considered frequency.

A good agreement between the two methods can be observed.
Although the coincidence of results, PG-PLSR is very fast compared
with iterative inversion, which is a computationally expensive method

Table 2
Performances of the two PG-PLSR models.

Outputs Calibration set (200 examples) Test set (100 examples)

RMSEC R2
cal RMSEP R2

pred

PG-PLSR for liquids ε′andε″ 1.2354×10−2 0.9999998 3.5334×10−2 0.9999983
PG-PLSR for solids ε′andε″ 5.0037×10−3 0.9999966 6.0690×10−3 0.9999953

Fig. 8. Experimental measurements of real (G) and imaginary part (B) of the measuring cell admittance.
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since it involves the multiple resolution of the forward problem [4–6].
At approximately 1.1 GHz, the graph of Fig. 9(a) shows the relaxation
phenomenon of ethanol by opposition to Fig. 9(b) and (c) which don't
show any relaxation since it appears at higher frequency (about
17 GHz) for water [5] and non-existent for PEEK. Moreover, inversion

results fit well with theoretical low frequency permittivity, such as, in
reference [7] the theoretical low frequency permittivity of water and
ethanol at 25 °C are 79 and 24 respectively. Concerning PEEK known as
a lossless material (ε"≈ 0), the dielectric constant is 3.2–3.3 between
50 Hz and 10 kHz following reference [31]. Finally, results fit well with
other literature references [7–11,32–35].

The slight difference between inversion results and theoretical va-
lues is due to the presence of impurities in liquids and experimental
inaccuracies. Whereas, Dispersed and negative values at low fre-
quencies for Fig. 9(c) is due to the very low values of the admittance
(especially for the real part G which is the image of ε”) combined with
the inaccuracy of the analyser at frequencies below 10MHz.

8. Comparison between PG-PLSR and MLP-NN

In order to prove the high performances of PG-PLSR in microwave
characterization using open-ended coaxial line, a comparison study
with MLP-NN is achieved. Both PG-PLSR and MLP-NN models are used
to predict simultaneously ε′ and ε'' (R=2) of ethanol using the data-
base dedicated for liquids. The comparison is achieved on the optimal
PG-PLSR and MLP-NN models found by using CV procedure. The op-
timal 30 hidden neurons (one hidden layer) MLP-NN was trained using
Levenberg-Marquardt algorithm [36,37] with a nonlinear activation
function (logsig) and linear output function, while the optimal PG-PLSR
model (29 LV) is the one described in section 7. Since the goal error
cannot be imposed in PG-PLSR, the RMSEC found previously (Table 2)
is used as a stopping criterion for MLP-NN.

The comparison results presented in Table 3 show the large differ-
ences in the total CPU time spent for the calculations and the gen-
eralization ability traduced by RMSEP and R2

pred. Concerning the data-
base size used by PG-PLSR, it's well known that PLSR can predict the
responses even when observations are less than predictors, but the
larger sample size can result in higher performance of the model [30].
Indeed, Table 3 shows that the larger sample size results in lower
RMSEP and bigger R2

pred. Meanwhile, from Fig. 10 it can be observed
that 1/10 of the database used for calibrating MLP-NN model (200
examples) is widely sufficient for PG-PLSR, whereas an MLP-NN model
with 200 examples (Fig. 10 (c)) is totally useless (without talking about
a model MLP-NN with 45 examples).

In summary, a very fast PG-PLSR model with 200 examples (Fig. 10
(b)) and a very time consuming MLP-NN model with 2000 examples
(Fig. 10 (e)) are very satisfactory with an explained variance of more
than 99.99% (R2

pred≈ 1). Moreover, reduced database size is a very
important advantage in the cases where available data are limited such
as modelling of survival in medical researches or in the cases where
experimental measurements are required to create databases.

Table 3 summarizes the performances of each model.

9. Conclusion

In this work, the applicability and efficiency of the PG-PLSR method
for microwave characterization of dielectric materials is presented.
Usually, PLS create a regression model linking a matrix of predictors X

(a) Ethanol

(b) Water

(c) PEEK

Fig. 9. Permittivity evolution obtained by PG-PLSR and Iterative inversion.

Table 3
Performances of the two models.

CPU Time (s) RMSEC R2
cal Calibration set RMSEP R2

pred Test set

PG-PLSR 0.019 5.212× 10−3 0.9999999 45 4.132× 10−1 0.9997870 1000
0.022 1.235× 10−2 0.9999998 200 5.196× 10−2 0.9999966 1000
0.060 2.038× 10−2 0.9999994 2000 2.509× 10−2 0.9999992 1000

MLP-NN 4.59 7.2297 0.93674 200 17.833 0.71027 1000
451 4.270× 10−2 0.9999977 2000 4.944× 10−2 0.9999970 1000
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and a matrix of responses Y using a dimensionality reduction proce-
dure, in contrary to this paper where more predictors are first created
mathematically from original ones, inspired by the extended X bloc
method, before implementing PLS model. Results of measurements in-
version show the power of PG-PLSR as a fast, simple and accurate in-
version tool unless it requires more observations than predictors. PG-
PLSR gives a real time response contrary to iterative inversion which is
a very time consuming method. PG-PLSR is implemented with a rela-
tively small database contrary to other inversion tools like ANN and

SVM used in previous similar works [7–11]. Moreover, the comparison
with MLP-NN shows its superiority in terms of rapidity, simplicity and
accuracy for multivariate (R=2) response prediction.
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