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Abstract: This study proposes a hybrid model composed of multiple prediction algorithms and an autoregressive moving
average (ARMA) module for the thickness prediction. In order to attain higher accuracy, the prediction algorithms were
globally combined by simple voting to reduce the effect of the inductive bias imposed by each algorithm on the dataset.
The global multiexpert combination (GMEC) system included the multilayer perceptron neural network (MLPNN), radial
basis function network (RBFN), multiple linear regression (MLR), and support vector machines (SVM) algorithms. The
proposed hybrid model extends the GMEC system by integrating an ARMA module for the output. On the test dataset,
the mean absolute error (MEA) and root mean squared error (RMSE) were better for the hybrid model than the GMEC
system. The GMEC system had approximately twice better performance than the MLPNN, which was the best among
the learners. The performance was significantly improved via the hybrid model in terms of correlation coefficient (R).
The results suggested that the proposed hybrid model can be used for more accurate and precise prediction of aluminum

foil output thickness.
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1. Introduction

Aluminum foils are widely used in aeronautics and astronautics, transportation, packaging and printing, indus-
trial robots, energy engineering, ocean exploitation, etc. [1] due to their water-, air-, and light-proof features.
The thinner the foil, the more expensive it is, and it can be used in more specific application areas. Furthermore,
it is an obligation by standards to use aluminum foil of 6.35 micron thickness in cigarette packages and liquid
product packages. The quality of the whole process, beginning from foundry to the rolling, is very important
to achieve the desired thickness of the aluminum foil [2] and improving the precision of products is always a
hot research topic in the field. In the literature, data-driven modeling and control algorithms were proposed
or investigated to control and predict the thickness of the metal strip in the rolling process. For example, a
multiple support vector machine (MSVM) modeling approach was proposed by Liang et al. [3] to build a strip
thickness model in a hot rolling automatic gauge system. Hydraulic automatic gauge control (HAGC) system
identification and control were achieved by Mei et al. [4] based on radial basis function and backpropagation
neural networks in an automatic position control system. Marcellos et al. [5] proposed a method to obtain the
torque and rolling mechanical power estimates in real time without utilization of lamination process models.

The power estimates were obtained from stator electrical variables, which were readily available in AC drives.
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The determination of input and output strip thickness from torque and rolling mechanical power estimates was
investigated. A method based on the least squares (LS) method was introduced by Zheng and Qu [6] to analyze
and calculate the characteristic parameters of periodic export thickness error of the rolling mill, and a new
solution was proposed to control the rolling mill and to realize the compensation of the export thickness error.
Another study [7] used MLPNN for the prediction of aluminum foil output thickness using the armature and
field currents of the cold rolling machine. An extreme learning machine (ELM) and clustering forecast method
were applied by Wang et al. [8] for the rolling strip thickness prediction. An application of SVM regression for
HAGC for steel strip thickness prediction was proposed by Wei et al. [9]. They modeled the rolling gap with
SVM regression for prediction. Varol et al. [10] applied the MLPNN for the thickness prediction of coatings
fabricated by mechanical milling. A two layer feedforward network with sigmoid activation function was used.
The short-term prediction of aluminum strip thickness with SVM was investigated by Oztiirk and Seherli [11]
with various kernel functions. In a recent study by Oztiirk and Seherli [12], the nonlinearity analysis of thickness
time series was made and many steps ahead short-term prediction via global regressor combination was achieved
with significant accuracy.

The precision of the thickness prediction plays an important role in aluminum foil production. Therefore,
any improvement in the accuracy of prediction is crucial. The method proposed in this study uses the armature
and field current parameters of the cold rolling machine motors for instantaneous and precise prediction of
the aluminum foil output thickness. Various machine learning algorithms were compared in terms of thickness
prediction accuracy. After that, they were globally combined in order to improve the results by selecting the
output of the learner that had the minimum absolute error for the current input. An ARMA module was used
in the output of the GMEC system to obtain a hybrid model in order to further improve the accuracy. The
experimental results indicated that the hybrid model had significantly higher prediction performance, especially

for the nonstationary and irregular parts of the data.

2. The cold rolling process

The cold rolling machine used in this study is equipped with several instruments, actuators, and control devices,
as well as hydraulics and oiling systems. The cold rolling machine is formed by various rolls, which are driven
by direct current (DC) motors [13]. In Figure 1, the schematic diagram of the cold rolling machine is given.
The six main motor types in the machine are rolling mill motor, front coiling motor, back coiling motor, first
front uncoiling motor, first back uncoiling motor, and second uncoiling motor. These motors drive the tension
mills and the rolling mills, which are shown in Figure 1.

The rotation of the DC motors is controlled by armature and field currents. These currents are supplied by
the analog-to-digital converter (ADC) drivers, which are controlled by a programmable logic controller (PLC).
As the rotation speed of the motors is under control, the stable tension of the foil under the rollers is protected
[14].

The voltage equation for the armature circuit in a DC motor is
V=FE+1sRa, (1)
where I4 is armature current, R4 is armature resistance, and F is (in unit of voltage)

E = K29, (2)
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where K is a constant, ¢ is field flux (proportional to field current), and € is the speed of the motor (radian/s).

The generated torque (T) value is (in Nm)
T =K¢la. (3)

The angular speed of the motor is handled in units of radian/s as in the following, by combining Eq. (1) and
Eq. (2):

V- I4R4

Q Ko

(4)

According to Eq. (4), the speed of the motor changes directly proportional to armature current and inversely

‘/

proportional to field current.

=3

T

Figure 1. The schematic appearance of the cold rolling machine. 1: Aluminum folio roll, 2: uncoiling mill, 3: rolling
mills, 4: tension mills (from 4.1 to 4.5), 5: coiling mill, 6: pressure mill, 7: supporting mills, 8: disk shears, 9: X-ray
thickness measurement device.

During the rolling process, in order to keep the rolling speed constant, the angular rotation speed of the
uncoiling motors should decrease. Likewise, the angular rotation speed of the coiling motors should increase.
Otherwise, the tension will rupture the foil. The regulation of the tension is handled using the changes of the
coiling and uncoiling roll diameters. The principle is to keep the coiling motor power P,,,to constant during
the rolling process according to the formula P,,ot0r = M X W. Here, M is the static moment of the roller,
defined as M =T x (D/2), where D is the roll diameter and T is the tension. The angular speed of the roller is
W = (2 x m xn)/60. Here, n is the rotations per minute (rpm) of the roller, defined as n = (60 x V;)/(w x D),
where V is the speed of the roller. After simplification, W becomes W = (2 x V;)/D and so P,,t0r becomes
Priotor =T x Vi, which means the electrical power on the coiling motor is the multiplication of tension by the
speed of the roller.

The PLC pane used in this study included 1 Siemens 6ES7 405-10A01-0AA0 PLC, 1 Siemens 6ES7 952
1KKO00-0AAO flash memory, 1 Siemens 6ES7 414-2XK05-0AB0 CPU, and 1 Siemens 6GK7 443-1EX20-0XEQ
Ethernet card. The communication with Siemens drivers was provided by the PROFIBUS protocol. ADC
input/output (I/O) cards were used on the Siemens ET 200S I/O module for analog-to-digital I/O operations.
A Siemens SIMOREG 6RAT7075-6DV62-0 device was used as ADC on all driver panes.
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3. Data collection

The armature and field current values for all motors of the rolling machine and the output thickness of the
aluminum foil were continuously recorded on a PC. The output thickness of the aluminum foil was measured via
X-ray device while the foil was passing through the rolling mill. The measurement range, measurement interval,
and measurement accuracy were 0.002-0.2 mm, 100 mm, and 99.95% for the X-ray device, respectively. The
flow rate of the foil was 550 meters per minute during the rolling process of the 6.35 micron aluminum foil. The
surface roughness, i.e. profile roughness, of the rollers was 10-12 R,, where R, is a quantitative calculation of
the relative roughness of the surface. Since there are 6 tension mills in the cold rolling machine, there are 12
input features in the dataset. The variables x;—1 12 in Figure 1 correspond to the armature and field current
values that drive the tension mills. These values constitute the input features and the thickness value is the
output feature. In Table 1, the correspondence between the input variables z;—1 12 and the armature and field

current parameters of the DC motors is given.

Table 1. The correspondence between input variables and currents of the DC motors.

Variable Physical parameter

X1 Armature current for rolling mills motor

Xg Field current for rolling mills motor

X3 Armature current for front coiling motor

Xy Field current for front coiling motor

X5 Armature current for back coiling motor

Xg Field current for back coiling motor

X7 Armature current for first front uncoiling motor
Xg Field current for first front uncoiling motor

Xg Armature current for first back uncoiling motor
X10 Field current for first back uncoiling motor

X11 Armature current for second uncoiling motor
X12 Field current for second uncoiling motor

The data were continuously recorded every second on the PC during production if it was not set otherwise.
The data used for this study include 7250 instances that correspond to approximately 121 min of recording.

The portions where rupture occurred were excluded from the recorded thickness data beforehand.

4. Prediction algorithms

The output thickness prediction performances of various algorithms were compared against real output thickness
data. The algorithms used in this study were MLPNN, MLR, SVM, and RBFN.

MLPNN with backpropagation is a feedforward network where modification on the weights is based on
the difference between the computed and actual values of the output nodes. The main idea is to minimize
the mean squared error between the actual and computed output values in an iterative manner [15]. The
stopping criterion is the reduction of the total network error to a predefined level. The error is computed as
E = %Z i (z, — xt)Q, where 1z, is the output value and = is the actual (target) value. The output value for
neuron z; is calculated as X; = 6 (3.} x;w;;), where 6 is the transfer function and w;; is the weight between

the input neurons z; and the output neuron z;. € is the sigmoid function and defined as 6 (z) =1/ (1 +e~%).
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The backpropagation algorithm uses gradient descent to move the weight vectors in order to decrease error F

through the error surface to the global minima. The weights are updated according to the following formula:
AWJL (n + 1) = 775ij171' + OéAWji (n) R (5)

where 7 is the learning rate, a is the momentum coefficient, and dp; is the error value for the neuron on the
Lth layer.

0p; is calculated differently for output layer neurons and hidden layer neurons. For the output layer
neurons 6,; = (Oy,, — Op;) Opj (1 — Op;) and for the hidden layer neurons d,; = Oy (1 — Op;) > Spiwy; -

The MLPNN with one hidden layer is capable of approximating uniformly any continuous multivariate
function to any desired degree of accuracy. This implies that any failure of a function mapping by a multilayer
network must arise from inadequate choice of parameters or an insufficient number of hidden nodes [16].

Unlike a simple linear regression model where a single response measurement Y is related to a single
predictor X for each observation, multiple linear regression (MLR) is a statistical model that determines a
mathematical relationship between several independent variables and a dependent variable by fitting a linear

mathematical equation to the observed data [17] as in Eq. (6):
EY|X)=a+fiz1+...+ Bnzn, (6)

where « is called the intercept and §; are coefficients.

MLR is less complicated than nonlinear prediction methods, demands less computational power, and
requires fewer parameters prior to the application. In this study, the M5 algorithm was used as the attribute
selection method in MLR implementation. This algorithm builds trees whose leaves are associated to multi-
variate linear models and the nodes of the tree are chosen over the attribute that maximizes the expected error
reduction as a function of the standard deviation of output parameter. M5 removes the attribute with minimum
standardized coefficient at each step until no improvement is observed in Akaike information criterion (AIC)
error estimation [18].

The support vector machine (SVM) is based on statistical learning theory [19] and the basic idea is
to map the input dataset X into a high dimensional feature space F' via a nonlinear mapping function by
constructing an optimal hyperplane in this new space [20]. When the SVM is used for regression, a hyperplane
is constructed that lies close to as many points as possible. In the general form, the estimation function is
f(x) = (wx @ (x)) + b, where w and b are the coefficients to be estimated from data, and @ (z) is the
nonlinear function in feature space.

The risk function to be minimized is

N
* 1 *
R(w,0%) = 5lwl* +C (0 + ¢f), (7)
=1

and d; —w@ (z;) —b; < e+ 0;, (WD (z)) +b—d; <e+ of where g;,0F > 0.

The support vector regression estimation function is
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where «; and o are Lagrange coeflicients that force the predictions to move towards the target value d and
NSV is the number of support vectors. The kernel function K (X;, X;) = @ (X;) @ (X;) is any function that
satisfies Mercer’s theorem. In this study, the Pearson VII function-based kernel (PUK) proposed by Ustiin et
al. [21] was used because it was found more successful than the other two kernel functions (polynomial kernel
[14 (XX;)]” and RBF kernel (1/202|| X — X;||), respectively). The C, € , and kernel parameters p and o2 are
specified by the user. The complexity parameter C' is used for controlling the smoothness of the approximating
function and € determines the margin in which the round-off error is tolerated [22].

RBF networks are feedforward neural networks that have a single hidden layer of nonlinear units whose
activation functions are Gaussian or some other basis kernel function. They are trained with a supervised
training algorithm, but much faster than backpropagation networks. Because of the radial basis function
hidden units, they are less susceptible to nonstationary inputs [23]. The center of the basis function for a node
7 at the hidden layer is a vector ¢; whose size is as the input vector u and normally there is a different center for
each hidden unit. First, the radial distance d; between the input vector u and the center of the basis function
¢; is computed using the Euclidean distance for each hidden unit ¢ as d; = |ju — ¢;||. The output h; of each
hidden unit ¢ is then computed by applying the basis function G to this distance as h; = G (d;,0;). Then the

output for the jth unit in the output layer is computed as

L
Oj:fj (u):woj—i—Zw”-hi, ]:1,2,,M (9)
i=1
The training of the RBF network is formulated as a nonlinear unconstrained optimization problem. Given input

output training patterns (v*, %), k=12,... K, wij, and ¢ = 1,2,... ,L, 7= 1,2,..., M, the aim is to minimize

J(w,e) = Y0 g = f (uh) |2

5. The hybrid model

According to the no-free-lunch theorem, no single algorithm in a domain always induces the most accurate
learner [15]. The inductive bias of each prediction algorithm leads to error if its assumptions do not hold for
the data. Furthermore, each algorithm normally converges to a different solution and can fail under different
circumstances. By combining multiple prediction algorithms suitably, accuracy can be improved.

The multiexpert combination method used in this study assumes that the prediction algorithms work
in parallel. Given an input, each algorithm generates an output, and a linear combination of these outputs is
taken by simple voting. The main idea is the fusion of the prediction algorithms in order to attain a higher
accuracy level. The accuracy level will certainly be better than the most accurate prediction algorithm, because
the method chooses the best prediction with minimum error for each instance in the test dataset found by each
algorithm individually. In Figure 2, the global multiexpert combination (GMEC) model with simple voting
is shown. For each input x;j—;.12, the global function f(-) linearly combines the outputs of the prediction
algorithms by selecting the one with minimum absolute error (min AE) and generates the output y;. Let
MLPNNsg =|MLPNN, — ZTiydr|, SVMag =|SV My, . —2iyir|, RBFAp = |[RBF,,,, — %ii4r|, and
MLRsg = |MLR — Ztadr|, and then the f(-) selects the output of the regressor with minimum AE as
Yt+dr -

The proposed hybrid model, which uses an ARMA model on the output of GMEC model, is shown in
Figure 3. The ARMA models are an adaptation of discrete-time filtering methods developed by Wiener [24].

t+dT

Tt4dr

1466



OZTURK and SEHERLI/Turk J Elec Eng & Comp Sci

Figure 2. The GMEC model with simple voting.

They were applied to time series data obtained from various application areas by Box et al. [25]. In its compact
form, the ARMA model is

AlQyt)=Cl(qg)e(t), (10)

where y (t) is output at time t, A(g) and C (q) are polynomials given in Eq. (11) and Eq. (12), and e (¢) is

the white-noise disturbance value:

AlQ)=1+ag '+ +anq ", (11)

Cl@)=1+cqg  + - +cnqg ", (12)

where n, is the number of poles in the autoregressive part of the ARMA model and n. is the number of C
coefficients, which specifies the order of the moving-average part of the ARMA model. The output y (t) depends
on the previous outputs.

The flow chart of the hybrid model is given in Figure 4. After obtaining the GMEC model by globally
combining the output of the learners, the orders of the ARMA model are found via partial autocorrelation
function (PACF) and autocorrelation function (ACF) using error values of GMEC. The PACF and ACF are
used to identify the order of the AR process and MA process, respectively. Then the hybrid model is used for
the instantaneous prediction of the aluminum foil thickness using the new armature and field currents.

For nonstationary time series the terms of the ACF do not decay to zero, while they decay exponentially
to zero for stationary time series. On the other hand, the partial autocorrelation of an AR(p) process is close
to zero at lag p+1 and greater.

The previous inputs for the ARMA model are y (¢t —1)---y (¢t — p), which correspond to the difference

values (error values) between actual and predicted thickness data of the global multiexpert system. Therefore,

1467



OZTURK and SEHERLI/Turk J Elec Eng & Comp Sci

Xij=1.12

Figure 3. The proposed hybrid model for prediction.

the ARMA model is obtained by the error values produced by the global multiexpert system during each training
session. The predicted error outputs of the ARMA model are generated by using the error values of the test
data in each fold. These error values are subtracted from the estimated prediction values of the global expert

system to generate the final thickness prediction of the hybrid system.

6. Experimental results and discussion

The Weka [26] package libraries, C# programming language, and MATLAB were used for the implementation
of the hybrid model. The libraries of Weka were used for the application of the prediction algorithms and
MATLAB was used for the implementation of ARMA.

For MLPNN implementation, several different alternative hidden layer neuron numbers between 5 and
30 were tried experimentally along with different learning rates (between 0.01 and 0.5) and momentum values
(between 0.1 and 0.9) in order to find the most accurate thickness prediction. The MLPNN used in this study
was a 3-layer feedforward backpropagation neural network with 8 hidden neurons. In the input layer, there were
12 input nodes, which correspond to twelve armature and field current values. The predicted thickness value
was obtained in the single output node. The learning rate and momentum values that gave the best accuracy
were found as 0.01 and 0.2, respectively. The network was trained with 1000 steps in each fold. More training

steps did not improve the accuracy significantly.
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Start

4

Collect the thickness data
from PLC device

4

Train the learners (i.e., MLPNN,
SVM. MLR and RBFN) with data

y
Globally combine the outputs of the GMEC model
learners (GMEC)
V
Find orders of the ARMA Model via Hybrid model
PACF/ACF from the error values of GMEC 4
V

Obtain the ARMA Model using
error values of GMEC

V
Obtain the output of GMEC using Hybrid
new armature and field currents model

v

Obtain the output of ARMA
model using error values of GMEC

\

Subtract the output ARMA model from
GMEC output to obtain prediction value

End of cold
rolling process

Figure 4. The flow chart of the hybrid model.

The activation function of RBF neurons in the implemented RBF network is ¢ () = e™# ”””*””2, where
x is the input vector of armature and field current values, p is the center of the Gaussian kernel function, 3
is the width of the bell curve, and ||.|| is the Euclidean distance. The centers of the Gaussian kernel functions

were found with k-means clustering and the weights of the output layer were obtained by linear regression.
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Several different neuron numbers (between 2 and 100) and standard deviation values (between 0.01 and 0.5) of
the Gaussian kernel function were tested to find the best accuracy for the RBF network. The architecture with
12 neurons with standard deviation of 0.1 gave the most accurate prediction values.

In the SVM implementation, the PUK function was found more successful than the other kernel functions
(i.e. polynomial and RBF). The polynomial kernel function gave better accuracy than the RBF kernel function.
The exponent in the polynomial kernel function was found to be p = 2, which gave the best accuracy. Increasing
this exponent did not improve the accuracy. Fine-grain values (e.g., 0.7, 0.5, 0.3) and coarse-grain values (e.g.,
5, 10) other than 1 were applied to complexity parameter C. However, the accuracy did not improve. Likewise,
different values were given for ¢ , such as 0.01, 0.1, and 1, other than 0.001. Higher values of ¢ decreased the
accuracy of the SVM model.

In the MLR implementation, the relationship between input vector X and output thickness value Y was
defined as E (Y|X) = a + fiz1 + ... + Bnxy,, where « is called the intercept and §; are coefficients. The
greedy algorithm and M5 algorithm were compared for the attribute selection in the MLR model. The greedy
algorithm selected fewer attributes; however, the accuracy was not affected significantly.

It takes 218.13 s, 113.45 s, and 52.35 s on average for building the SVM model with PUK, poly kernel,
and RBF kernel, respectively. Testing times for these kernels are 0.42 s, 0.01 s, and 0.53 s, respectively. SVM
with PUK takes the longest to be built; however, its accuracy is twice better than the other algorithms. It takes
15.2 s to build the MLPNN model and the testing time is very close to 0 on average, which means testing is
very fast. The MLR model building time is 0.02 s and testing time is 0.01 s on average. For the RBF network,
the model building time is 0.13 s and testing time is 0.01 s on average.

The k-fold validation method avoids overfitting and is a standard method used to find out-of-sample pre-
diction error. The prediction algorithms were evaluated using leave-one-out 10-fold cross-validation. Therefore,
the whole dataset of 7250 instances was divided into a training set of 6525 instances and testing set of 725
instances for each fold. In each fold, a sliding window of 6525 data point size is used to select the training set

in the whole dataset in a circular manner. Thus, each data instance had the chance to be tested in a specific

fold.
The steps for the evaluation of the hybrid model in aluminum foil thickness prediction are given below.

Step 1. Collect the thickness data from the PLC device.

Step 2. Split the data into 10 different training and validation subsets for 10-fold cross-validation.

Using the corresponding training subset in each fold, do steps 3-6.

Step 3. Train the learners (e.g., MLPNN, SVM, MLR, and RBFN).

Step 4. Globally combine the output of the learners with simple voting depending on the MAE criterion.

Step 5. Apply ACF and PACF to the error values of GMEC to find the appropriate orders for the AR
and MA processes of the ARMA model.

Step 6. Obtain the ARMA model using the error values of GMEC.

Using the corresponding validation subset in each fold, do steps 7-9.

Step 7. Obtain the output of GMEC.

Step 8. Obtain the output of the ARMA model using the error values of GMEC.

Step 9. Subtract the ARMA model output from GMEC predicted values to obtain the final prediction

results.
In Figure 5, the thickness values of aluminum foil are shown for 7250 s of recording during the cold rolling
process.
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The PACF was close to zero at lag 4 for the test data, which is shown in Figure 6 as an example.

Therefore, the order 4 was used for the AR process to produce the ARMA model for this portion of test data.
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Figure 5. The thickness values of aluminum foil recorded Figure 6. The PACF plot of thickness test data.

during 7250 s of production.

The ACF was close to zero at lag 9 for the test data, which is shown in Figure 7 as an example. Therefore,
the order of 9 was used for the MA process to produce the ARMA model for this portion of test data.
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Figure 7. The ACF plot of thickness test data.

The mean absolute error (MAE), root mean squared error (RMSE), and correlation coefficient (R)

equations used for the evaluation of the prediction algorithms are given as follows:

1 n
MAE = — ;— P
o245 = Byl (13)
Jj=1
1 — 9
MSE = | — A; —P 14
RMSE = 3 (4 = Pi)" (14)
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where A; and P; are the actual and the predicted values, and A and P are the mean of actual and
predicted values, respectively. The average MAE, RMSE, and R values obtained by using the prediction results
of each individual fold are given in Table 2. The R values for GMEC and the hybrid model are significantly higher
than those of the other prediction algorithms. The hybrid model has higher R values on average than GMEC,
which means a better overall correlation. According to the results, MLPNN has the best accuracy among the
other traditional prediction algorithms in terms of MAE and RMSE. R is also the highest for MLPNN with
the value of 0.3181. However, the accuracy of the GMEC system is approximately twice better than MLPNN
in terms of MAE and RMSE. The R value is significantly higher than MLPNN for the GMEC system. The
hybrid model further improves the overall accuracy. These accuracy improvements are very important for the

precision of the thickness prediction, especially when there is nonstationary behavior in the data.

Table 2. Average MAE, RMSE, and R values for the prediction algorithms, the GMEC system, and the proposed hybrid
model for the test data.

Methods MAE RMSE R

MLPNN 0.0116 0.0137 0.3181
SVM (PUK) 0.0118 0.0145 0.1804
RBF network 0.0154 0.0181 0.0972
MLR 0.0139 0.0170 0.0927
GMEC 0.0058 0.0080 0.8232
Hybrid model 0.0040 0.0052 0.8477

The overall accuracy was significantly improved by means of the hybrid model, especially for the portions
of test data where the data exhibit nonstationary behavior. The comparison of MAE and RMSE values for the
GMEC and hybrid model is given in Table 3 for all of the folds. For folds 1 and 10, the MAE values are above
0.01, and for fold 9 it is very close to 0.01. For folds 1, 9, and 10, the RMSE values of the GMEC model are
above 0.01. The test data used in these 3 folds correspond to the nonstationary part of the thickness data. The
error values above or close to 0.01 are not acceptable for 6.35 micron aluminum foil thickness prediction. The
hybrid model results are obviously below 0.01 for all folds.

Table 3. MAE and RMSE values for GMEC and hybrid model for the test data.

Methods Fold-1 | Fold-2 | Fold-3 | Fold-4 | Fold-5 | Fold-6 | Fold-7 | Fold-8 | Fold-9 | Fold-
10

GMEC MAE 0.0126 | 0.0064 | 0.0029 | 0.0023 | 0.0041 | 0.0025 | 0.0051 | 0.0036 | 0.0094| 0.0212

Hybrid MAE 0.0049 | 0.0044 | 0.0028 | 0.0026 | 0.0039 | 0.0026 | 0.0042 | 0.0034 | 0.0055| 0.0063

GMEC RMSE | 0.0123| 0.0087 | 0.0043 | 0.0032 | 0.0055 | 0.0037 | 0.0071 | 0.0053 | 0.0124| 0.0286

Hybrid RMSE | 0.0052| 0.0056 | 0.0038 | 0.0033 | 0.0049 | 0.0036 | 0.0055 | 0.0046 | 0.0072| 0.0085

The actual and predicted thickness values for one of the test sessions are given in Figure 8 as an example.
In this figure, it can be observed how the prediction accuracy improves in the case of the hybrid model. The
prediction performance of the hybrid model is very obvious, where the nonstationarity of the data is high. It
can be observed from the figure how the predicted thickness values get closer to the actual values by means
of the hybrid model. The smoothing effect of the ARMA module moves the prediction output of the global

multiexpert system towards the mean.
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Figure 8. The actual and predicted thickness values for the test dataset.

The performances of the prediction algorithms as well as the ones proposed in this study are given in
Figure 9 for an example portion of test data. As can be seen in Figure 9, the output of GMEC is mainly
determined by the output of the SVM algorithm for this portion. The performance of RBF and MLPNN are
nearly equally bad, while the MLR algorithm is the worst.
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Figure 9. Comparison of the prediction performances of the algorithms for the test dataset.

The R value is the measure of how strongly the actual and and predicted thickness values are correlated.
On the other hand, R? is a statistical measure of correlation determination of how close the actual data are
to the regression model. R2 is 0.7186 for the hybrid model, while it is 0.6777 for GMEC. A high value of R?
alone does not necessarily indicate that the regression model has a good fit to the actual data. Furthermore,
although the R? values of the hybrid model and GMEC are close, we need a formal hypothesis test to determine
if they are statistically significant. In this study, we used the two-samples F-test to determine the statistical
significance of the obtained results. The null hypothesis was that the actual and predicted thickness values
come from normal distributions with the same variance. According to the test results, the P-value of the hybrid

model was found as 0.0035. This means that if the alpha significance level is set small or equal to 0.0035 in
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the F-test, the null hypothesis is not rejected. The SVM, RBF, and MLR algorithms had P-values of zero,
which means that the null hypothesis is always rejected. The GMEC and MLPNN had P-values that were very
close to zero, which means that even setting an alpha significance level was not meaningful. Therefore, we can

conclude that only the hybrid model has a good fit to the actual thickness data.

Table 4. Mean and variance values of the actual thickness data and the output of the prediction algorithms.

Data Mean Variance

Actual thickness 9.9898 0.00045971
Hybrid model output 9.9900 0.00049231
GMEC output 9.9918 0.00069533
MLPNN output 9.9941 0.00087215
SVM output 9.9871 0.00017066
MLR output 9.9851 0.00013701
RBF output 9.9872 0.00007074

As can be seen from Table 4, the variances of actual thickness data and hybrid model output are very

close. The variance of GMEC output is 50% over the actual thickness data variance.

7. Conclusions and future work

The hybrid model proposed in this study can be used to predict the thickness of the aluminum foil in an
acceptable range (with average MAE of 0.0040, average RMSE of 0.0052, and R of 0.8477) using the armature
and field current values of the cold rolling machine motors. These prediction values can be used by the operators
of the rolling machine in order to control and audit the production process. The prediction outputs can be
used for diagnostic cross-checks to make sure that the PLC is providing the armature and field currents to the
rolling machine motors correctly and on time, by comparing them with the real thickness measures of the X-ray
device. Since one of the principal purposes of this study is to predict the thickness of 6.35 micron aluminum
foil, the deviation in the prediction value should not exceed £0.0099. Therefore, any improvement in MAE,
RMSE, or R values is important for the reliability of the thickness prediction. The convergence time of SVM is
much longer than the other algorithms, so this affects the total training time of the hybrid model negatively. In
order to reduce the training time, a faster algorithm than SVM may be considered in the model. However, the
prediction times of all of the algorithms are under 1 s. Therefore, since the sampling period is 1 s in the cold
rolling process, the real-time application of the hybrid model is not affected. As a future work, we will focus on
the prediction of aluminum foil ruptures before they occur. The ruptures are caused by the unexpected tensions

produced by the coiling and uncoiling motors.
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