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Image quality assessment metrics combining
structural similarity and image fidelity

with visual attention

Engin Mendi*

Department of Computer Engineering, KTO Karatay University, Konya, Turkey

Abstract. Image quality assessment has a great importance in several image processing applications. Recently, various objective
image quality metrics have been proposed in order to predict human visual perception. In this paper, novel image quality metrics,
S-SSIM (saliency-based structural similarity index) and S-VIF (saliency-based visual information fidelity), are proposed based
on a visual attention model extracting frequency-tuned salient region. Saliency maps are produced from the color and luminance
features of the image. SSIM and VIF in pixel domain are modified by the weighting factors of the saliency maps. We validated
our approach using 2 image databases as test bed: These databases contain subjective scores for each image. Our results showed
that our technique is more correlated with human subjective perception.
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1. Introduction

Image quality assessment (IQA) has a great
importance in several image and video. processing
applications such as filter design, image compression,
restoration, denoising, reconstruction, and classifica-
tion. The aim of image quality assessment is predicting
image quality of display output perceived by the final
user. Multimedia contents are subjected to a variety
of artifacts during acquisition, processing, storage and
delivery, which may lead to reductions in the quality.
IQA can be used to dynamically monitor and adjust
the image quality, so that the output quality of the
image or video presented to the user can be maximized
for available resources such as network conditions and
bandwidth requirements.
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IQA methods fall into two categories: 1) subjective
assessment by humans, and 2) objective assessment
by algorithms. Subjective image quality experiments
are classical statistical measurements of how humans
perceive the image quality. Subjective measures are
determined by a Mean Opinion Score (MOS) which
relies on human perception.

The mathematical tools for subjective assessment of
image quality are well defined, although certain practi-
cal aspects in designing efficient experiment remain to
be defined. While subjective assessment is often used to
judge the image quality, it is time consuming and can-
not be implemented in the real time. This is the main
reason behind the development of new algorithms that
predict subjective image quality measure accurately. In
[1], how well an algorithm performs is determined by
how well it correlates with the human perception of the
image quality. Objective quality metrics are algorithms
designed to characterize the quality of an image and to
predict the viewer’s opinion.
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Different types of objective metrics exist, as illus-
trated in [2]. These are based on mathematical
measurements that are practical and are applied without
the need of human observers. Objective quality metrics
can be classified into 3 categories: 1) Full Reference
(FR), 2) Reduced Reference (RR) and 3) No Reference
(NR). These metrics are based on the availability of an
original non-distorted reference image to be compared
with a corresponding distorted image. In a FR case,
reference image information is available; in a RR case,
partial information of reference image is known and no
information about the reference image is available in a
NR case.

In the area of image processing, more than 50 years,
mean squared error (MSE) is being used as quasi
—standard fidelity metrics. The MSE still continues to
be widely used as a signal fidelity measure. At the
same time, there are recent studies that have devel-
oped more advanced signal fidelity measures especially
in applications where perceptual criteria might be rel-
evant. It is interesting to demonstrate how the image
quality is measured for different regions in an image,
as they may not have the same importance. Visual
importance has been explored in the context of visual
saliency [3], fixation calculation [1], and moving object
tracking [4]. In [5], an experiment proposes to record
gaze coordinates corresponding to human eye move-
ments and the Gaze — Attentive Fixation Finding Engine
(GAFFE). In [1], GAFFE is used to find points of poten-
tial visual importance and have developed an algorithm
for fixation-based and quality — based weighting. The
region-of interest based image quality assessment still
remains unexplored.

In this study, we develop novel image quality metrics,
S-SSIM (saliency-based structural similarity index)
and S-VIF (saliency-based visual information fidelity),
based on frequency-tuned salient region detection.
Saliency maps are produced from the color and lumi-
nance features of the image. The structural similarity
index (SSIM) and the visual information fidelity (VIF)
in pixel domain are modified by the weighting fac-
tors of the saliency maps. Our results show that our
technique is more correlated with human subjective
perception.

The rest of this paper is organized as follows: Sec-
tion 2 provides a brief overview of SSIM and VIF in
pixel domain. Proposed image quality metrics based on
frequency-tuned salient region are presented in Section
3. The results of our approach are presented in Section
4. Finally, in Section 5 the conclusions of this paper are
summarized.

2. Background
2.1. SSIM

Considering two images x = {x;[i=1,2,..., N}
and y ={y;li=1,2,..., N} where N is the number
of pixels and x; and y; are the ith pixels of the images
of x and y, respectively, SSIM(x, y) combines three
comparison components, namely luminance-/(x, ),
contrast-c(x, y) and structure-s(x, y) [6]:

SSIM(x, y) = fd(x, y), c(x, y), s(x, y)) (1)

Luminance, contrast and structure comparisons are
defined as follows:

2pxpy + Ci
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where ty, [y, 0x, 0y and oy, are means of x and y,
variances of x and y and correlation coefficient between
xand y. K| and K> are scalar constants that K, Ky <<
1"and L is the dynamic range of the pixel values. The
overall SSIM is obtained by the product of luminance,
contrast and structure components:
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Finally, SSIM index yields to:
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The fundamental principle of the structural approach
is that the human visual system is highly adapted to
extract structural information from the visual scene
and therefore measurement of structural similarity (or
distortion) could provide good approximation of sub-
jective perceptual image quality. The main drawback
of SSIM algorithm in spatial domain is that it is highly
sensitive to translation, rotation and scaling of images
[19].
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2.2. VIF in pixel domain

VIF index relates image fidelity to the mutual infor-
mation between the test and the reference images using
source and distortion models and as well as human
visual system model. It is given as [7]:

s M;

> > ICijs Fij)

j=li=1
s M;

> > I(Cij;Eij)

j=li=1

VIF = ®)

where I(C;j; E; ;) and I(C;j; F;;) represent the
information perceived by the human observer from a
particular sub band in the reference and the test images
respectively. C is a block vector from a given location
in the reference image, E is the perception of block
C by a human observer from reference image, which
can be represented as E = C + N, where N is addi-
tive noise. F is the perception of block C by a human
observer from test image, which can be represented as
F = D + N. D is the block vector from the test image
givenas D = GC + V where G and V are the blur and
noise distortions, respectively. S denotes the number of
all sub-bands and M; is the number of blocks at j th
sub-band.

3. Image quality assessment with visual
attention

Image quality assessment (IQA) has a great
importance in several image and video processing
applications such as filter design, image compression,
restoration, denoising, reconstruction, and classifica-
tion. The aim of image quality

In recent years, it has become clear that many prob-
lems in perception organization are difficult to solve
without introducing the contextual information of a
visual scene. Subjects often search for the component
feature of a target rather than searching for the target
itself. Even if the target is a simple geometric form
most computational models of attention ignore contex-
tual information provided by the correlation between
objects and the scene. Schyns and Oliva [8] showed that
a coarse representation of the scene initiates seman-
tic recognition before the identification of objects is
processed. Many studies support the idea that scene
semantics can be available early in the chain of infor-
mation processing and suggest that scene recognition

may not require object recognition as a first step [9, 20].
Human vision can recognize the scene even using low-
spacial frequency image.

Another reason for features—driven attention is that
this reflects the attempt of the eye to maximize the infor-
mation it can gather at each fixation [10]. The purpose of
early visual processing is to transform the highly redun-
dant sensory input into more efficient factorial code. At
the same time the human visual system has evolved
multiple mechanisms for controlling gaze. Tracking
can be formulated in a probabilistic framework in both
the feature- and intensity-driven settings. The principal
component analysis (PCA) and the independent com-
ponent analysis (ICA) are two common techniques that
allow for probabilistic treatment. The PCA assumes the
data distribution has a Gaussian structure and model
data with an appropriate orthogonal basis functions.
The ICA generalizes PCA by permitting non-Gaussian
distributions and non-orthogonal bases. However, these
techniques do not allow noise to be modeled sepa-
rately from the signal structure, and they do not permit
overcomplete codes in which there are more basis func-
tions than input dimensions. Bell and Sejnowki [11]
applied their Infomax-based ICA algorithm to image
coding and reported that the independent components
of the natural scenes resemble edge filters. Such Gabor-
like filters are believed to be a good model of the
spatiotemporal receptive fields of simples’ cells in pri-
mary visual cortex (V1). In [12], Olshausen and Field
argued for maximizing the sparseness of the distribu-
tion of output activities, or “minimum entropy” coding
as a good feature detector. In this study, we propose to
model conjunction search (a search for a unique com-
bination of two features — e.g, orientation and spatial
frequency — among distractions that share only one of
these features), which examines how the system com-
bines features into perceptual wholes. We propose to
improve the effectiveness of the decomposition algo-
rithm by providing the algorithm with classification
awareness. Attentional guidance does not depend solely
on local visual features, but must also include the effects
of interactions among features. The idea is to group
filters (basis components) which become responsible
for extracting similar features. A certain feature will be
shared by the nearest neighbors of fixations [21].

In this study, we propose a visual attention model
based on the extended frequency-tuned saliency
model [13] and incorporating conjunction search [10].
A flowchart of the image quality assessment metrics
is depicted in Fig. 1. The proposed model finds low-
level bottom—up saliency. It is inspired by the biological
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Fig. 1. The flowchart of the proposed image quality assessment metrics.

concept of center-surround contracts sensitivity of
human visual system.

The proposed approach offers three advantages over
existing methods: uniformly highlighted salient regions
with well defined boundaries, full resolution and com-
putational efficiency.

The proposed model finds low-level bottom—up
saliency. It is inspired by the biological concept of
center-surround contracts sensitivity of human visual
system. The proposed approach offers three advantages
over existing methods: uniformly highlighted salient
regions with well defined boundaries, full resolution
and computational efficiency.

Saliency maps are produced from the color and
luminance features of the image. Saliency map .S is
formulated for the image I as follows:

S, y) = |[I = Lu(x, )| (6)

where I, is the mean pixel value of the image;, [, (x, y)
is the corresponding pixel vector value of the Gaussian
blurred image from the original image and |.|| is the
Euclidean distance. Each pixel location is the Lab color
space vector, i.e. [L, a, b]T.

Blurred image is a Gaussian blurred version (using
5 x 5 separable binominal kernel) of the original image.
The method finds the Euclidean distance between the
Lab pixel vector in a Gaussian filtered image with the
average Lab vector for the input image.

3.1. S-SSIM and S-VIF in pixel domain

VIF index relates image fidelity to the mutual infor-
mation between One of the common shortcomings of
existing image quality metrics is the fact that they
analyze the entire image uniformly. In human visual

system, the importance of a visual event should increase
with the information content, and decrease with the per-
ceptual uncertainty [14]: we incorporated saliency map
as weighting function into the SSIM and VIF indexes, so
saliency factors can be instated into the quality metrics.
The weighting function is:

w(x, y) = |1y = Ly (x, )| (7

We define saliency-based SSIM as S-SSIM and
saliency-based VIF as S-VIF as follows:

3, 30, wix, »)SSIM(, y)
Do 2oy wx, )

S 5 w(C, F)VIF(C, F)
S-VIF =
ZS ZM UJ(C, F)

S-SSIM =

(®)

SSIM and VIF in pixel domain mainly focus on local
information and do not take global saliency features into
consideration [15]. Figure 2 shows an example case that
SSIM and VIF in pixel domain fail. Figure 2(a) and (b)
show a reference image and its frequency tuned saliency
map, respectively. In Fig. 2(c) and (e), the images are
distorted at visually attended and less-attended loca-
tions by higher amount of Gaussian noise and blurring
effect, respectively. Less amount of same distortions are
applied to the images at only less-attended locations in
Fig. 2(d) and (f). It is easy to see that the quality of
images in Fig. 2(d) and (f) are better than of Fig. 2(c)
and (e).

However, as shown in Table 1, SSIM and VIF in
pixel domain give incorrect results; S-SSIM and S-VIF
in pixel domain scores are more realistic.
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(e)

®

Fig. 2. a) reference image, b) saliency map of the reference image), ¢) Distorted image with higher amount of Gaussian noise applied to attended
and less-attended locations, d) Distorted image with less amount of Gaussian noise applied to only less-attended locations, e) Distorted image with
higher amount of blurring effect applied to attended and less-attended locations, f) Distorted image with less amount of blurring effect applied to

only less-attended locations.

Table 1
Scores of SSIM, S-SSIM, VIF and S-VIF in pixel domains for
images in Fig. 2

SSIM S-SSIM VIF in pixel S-VIF in pixel
Fig.2(c)  0.9846 0.9698 0.9842 0.8766
Fig. 2(d)  0.9739 0.9705 0.9556 0.8965
Fig.2(e)  0.9830 0.9656 0.9287 0.8483
Fig. 2(f) 0.9690 0.9672 0.8255 0.8525

4. Experimental results

We validated our approach using 2 image databases
as test bed. These databases contain subjective scores

for each image. First is the IVC Image database [16]
consisting of 10 reference images with 235 distorted
images (JPEG, JPEG2000, LAR coded and blurred).
Second is the LIVE Image Database [17] consisting
of 29 original images and 460 distorted images (227
JPEG2000 images and 233 JPEG images.). Non-linear
regression analysis has been performed to fit the data. To
measure the association between subjective and objec-
tive scores Pearson correlation coefficient is used.
Figures 3 and 4 show the results for IVC and LIVE
databases, respectively. Each sample point denotes the
subjective/objective scores of one test image. The y axis
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Fig. 3. Scatter plots of subjective/objective scores on IVC Database. (a) SSIM; (b) S-SSIM, ¢) VIF in pixel domain, d) S-VIF in pixel domain.

Table 2
Pearson correlation coefficients

LIVE - JPEG&JPEG2000

IVC - all images

images
SSIM 0.7047 0.6823
S-SSIM 0.8261 0.7475
VIF-pixel 0.8435 0.7126
S-VIF-pixel 0.8715 0.9083

in the figures represents the subjective scores in the
databases. The x axis represents the predicted quality
of images after a nonlinear regression toward 4 objec-
tive scores, which are SSIM, S-SSIM, VIF and S-VIF
in pixel domains, respectively. The Pearson validation
scores between assessment metrics are given in Table 2.

The Pearson correlation coefficient varies from —1
to 1 and widely used to measure the relation between
two variables. High absolute values indicate that the

two variables being evaluated have high correlation. As
shown in Table 2, our technique is more correlated with
human subjective perception.

5. Conclusions

This paper presents two novel image quality metrics,
S-SSIM and S-VIF in pixel domain. The metrics are
based on frequency-tuned salient region detection and
computationally inexpensive. Salient region detection
captures full resolution saliency maps exploiting the
color and luminance features of the images. Saliency
maps are then set as weighting functions and incorpo-
rated into SSIM and VIF in pixel domain. The approach
has been validated using two image databases: 1) IVC
Image database consisting of 10 reference images with
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Fig. 4. Scatter plots of subjective/objective scores on LIVE Database. Red points (+) and blue points (x) denote JPEG and JPEG2000 images,
respectively, (a) SSIM; (b) S-SSIM, ¢) VIF in pixel domain, d) S-VIF in pixel domain [18].

235 distorted images (JPEG, JPEG2000, LAR coded
and blurred) and LIVE Image Database consisting
of 29 original images and 460 distorted images (227
JPEG2000 images and 233 JPEG images.). Exper-
iments show that the proposed metrics match with
Human Visual System better than SSIM and VIF in
pixel domain.
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