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h i g h l i g h t s

• A multiobjective optimization algo-
rithm (MOEA) has been adapted to
optimize two different objective
functions and find Pareto solutions.

• The MOEA is integrated with Dual-
Tree Complex Wavelet Transform
(DT-CWT) to provide effective mul-
timedia communication in lossy net-
works.

• The DT-CWT is used to obtain the
subbands or set of coefficients which
are used as a search space in the op-
timization problem.

• One fitness function is designed to
generate optimal multiple descrip-
tion coding (MDCs) or descriptions
and the second one is used to obtain
optimal parameter values for denois-
ing filter to reduce mixed noise on
descriptions.

• Proposed adaptive MDC system can
be applied to the corrupted mixed
noisy image (e.g. Gaussian and Im-
pulse noise).
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a b s t r a c t

In this paper, a novel method for generation of multiple description (MD) wavelet based image coding
is proposed by using Multi-Objective Evolutionary Algorithms (MOEAs). Complexity of the multimedia
transmission problem has been increased for MD coders if an input image is affected by any type of noise.
In this case, it is necessary to solve twodifferent problemswhich are designing the optimal side quantizers
and estimating optimal parameters of the denoising filter. ExistingMD coding (MDC) generationmethods
are capable of solving only one problemwhich is to design side quantizers from the given noise-free image
but they can fail reducing any type of noise on the descriptions if they applied to the given noisy image and
this will cause bad quality ofmultimedia transmission in networks. Proposedmethod is used to overcome
these difficulties to provide effectivemultimedia transmission in lossy networks. To achieve it, Dual Tree-
Complex Wavelet Transform (DT-CWT) is first applied to the noisy image to obtain the subbands or set
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Multi-objective formulation and
optimization
Wavelets

of coefficients which are used as a search space in the optimization problem. After that, two different
objective functions are simultaneously employed in the MOEA to find pareto optimal solutions with
the minimum costs by evolving the initial individuals through generations. Thus, optimal quantizers are
created for MDCs generation and obtained optimum parameters are used in the image filter to remove
the mixed Gaussian impulse noise on the descriptions effectively. The results demonstrate that proposed
method is robust to the mixed Gaussian impulse noise, and offers a significant improvement of optimal
side quantizers for balanced MDCs generation at different bitrates.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, effective multimedia transmission has be-
come a challenging problem in the lossy communication networks.
In order to deliver good quality of multimedia source data, various
multimedia transmission schemes such as progressive transmis-
sion, multiple description coding (MDC), unequal error protec-
tion (UEP) transmission scheme etc. have been proposed [1]. The
multimedia transmission schemes have been applied to an input
image in the server node to create different descriptions in such a
way that bitrate and quality of reconstructed image increase when
descriptions are received at the destination node [1]. Amongst
many schemes, MDC has become an efficient approach to transmit
the multimedia source data through the network channels/paths
in the lossy networks [1,2]. The main purpose of using MDC is to
split the information from a given source image into theMDs. After
that they are transmitted throughmultipath in the communication
networks and there should be a certain amount of common infor-
mation correlation between the descriptions [1,2].

1.1. Survey of MDC methods

MDC is one of the promising solutions for image delivery over
lossy networks. Most of MDC schemes are designed to create MDs
from a given noise-free image and MDs should be equally impor-
tant in terms of quality and bitrate for the advanced performance of
multimedia communication. However, producing equally impor-
tant or balancedMDs is a very challenging problem andmanyMDC
schemes have been presented to solve it. For instance, Vaisham-
payan [3] proposed MDC generation scheme by using uniform
MD Scalar Quantization (MDSQ). The purpose of this method is to
design scalar quantizers to create different descriptions from the
given noise-free input image. Samuelsson et al. [4] combinedGaus-
sian mixture models (GMMs) with the scalar quantizers to gener-
ate MDCs. According to the parameters of the GMM, the method
combines MDC scalar quantizers, yielding a source-optimized vec-
tor MDC system. In [5], the pairwise correlating transform to
generate multiple correlated descriptions in the framework of
standard DCT-based image coding is presented. In this work, coef-
ficients are quantized by using scalar quantizers to create two side
descriptions. Servetto et al. [6] proposed a MDC method by using
Discrete Wavelet Transform (DWT) combined with the uniform
scalar quantization technique. The method successfully creates
equally importantMDs from the obtained sub-bands of the decom-
posed noise free input image. However, generating MDCs using
uniform quantization technique is not an effective approach, since
each subband has different information content of the input image.
In [7] and [8], different wavelet based MDC methods have been
used to create descriptions. MDC versions of many popular image
coding techniques were also examined, such as SPIHT [9], sub-
band coding [10], vector quantization [11], and subsampling [12].
However, the main problem in those methods is to design optimal
quantizers for the MDC generation so that it is necessary to apply
an optimization method to design optimal quantizers. In [13],
Genetic Algorithm (GA) combined with wavelet transformation

technique is proposed and it is applied to design optimal subband
uniform quantizers. The method single objective function to op-
timize the problem for designing uniform quantizers and creates
descriptions sequentially. Liu et al. [14] proposed sampling-based
image coding scheme to achieve competitive coding efficiency
at lower encoder computational complexity. The method first
generates compact image representation of the input image. Thus,
a polyphase down-sampled version of the image is created us-
ing local random binary convolution kernel with down-sampling
method. The results demonstrate that the proposed scheme pro-
vides promising results at low bit-rates. In another work [15], an
adaptive multiple description depth image coding scheme based
onwavelet sub-band coefficients is proposed to createMDCs of the
image. The method uses DWT to create subbands and the low fre-
quency and high frequency subbands are separately encoded using
optimizedmultiple description lattice quantization and embedded
block coding, respectively. However, using two different encod-
ing methods increase the complexity of decoding at the receiver
side. Also, the method uses DWT which suffers from some draw-
backs discussed in [16]. Anothermultiple description image coding
scheme is proposed in [17] which uses 2D dual-tree transform and
the enhanced x-tree encoding method. However, optimal MDCs
are not generated as the method does not use any optimization
strategy. Zong et al. [18] proposed perceptual multiple description
codingwith randomly offset quantizerswhich partitions the image
into M subsets, and then obtaining M descriptions. The method
uses non-optimal step sizes which are applied in DCT to generate
the descriptions. In [19], a multiple description vector quantizer
(VQ) method is proposed to produce MDCs. The method has been
developedbased on the self-organizingmap (SOM) andMDSQ. Fur-
thermore, differentMDCmethods have been proposed and applied
in different image transmission problems such as encrypted image
transmission [20] and airborne image transmission [21].

The common problem in the state-of-the-art methods is that
they are sensitive to noise and vulnerable to complicated scenarios
with existence of noise in the input images. These methods are
mostly used to createMDCs fromnoise-free images, but the quality
of MDC transmission highly depends on the quality of the input
image which may be corrupted by various noises, particularly
Gaussian and impulse noises. In order to transmit high quality
MDs, it is essential to remove the noise from descriptions while
keeping the desired image features such as edges, textures and
details of images. To resolve it, one type of approach is to use
MDC coders with the denoising filters, sequentially. Many image
denoising methods have been proposed to remove Gaussian and
impulse noise separately or together. However, they may remove
high frequency features from the images, especially when they
are corrupted with the high level of noise(s) [22–24]. Another
drawback in some of MDC methods is that DWT or DCT is used
as the transformation domain which cannot represent sufficient
orientations of the images. For instance, DWT suffers frommultiple
weaknesses which are discussed in [16]. Another problem of MDC
methods is to generate descriptions of the input image sequentially
which is time consuming and not effective process. In this case,
MDC methods must be executed more than one time to generate
multiple descriptions [1,3,4,6,11,13,25]. Furthermore, many MDC
methods cannot provide optimal solution for the description gen-
eration.
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1.2. Contribution

To address the above-mentioned drawbacks, we propose a new
optimization approach using MOEA to provide trade-off between
objectives for achieving a satisfactory solution to the problem. The
main contributions of this work are to:
(1) develop a new optimization-based denoising algorithm for
mixed Gaussian and impulse noise reduction;
(2) adapt MOEA for effective multimedia transmission in the lossy
networks;
(3) useDT-CWT to preserve high frequency components in descrip-
tions;
(4) find optimal pareto solutions for simultaneously designing
optimal quantizers and to obtain optimal parameters of denoising
filter
(5) generate good quality of descriptions for efficient multimedia
transmission.

To achieve these, two different objective functions have been
proposed and used in the MOEA to generate optimal quality MDCs
at different bitrates. The first objective function is used to design
the adaptive optimum quantizers for MDC generation. The second
objective function is used to find optimal parameters for designing
filter to remove themixed Gaussian impulse noise on descriptions.
Unlike the other search based algorithms (e.g. GA), the MOEA pro-
vides pareto optimal solutions at each iteration. Thus, it optimizes
more than one objective function simultaneously and it is em-
ployed to provide an optimal trade-off between the objective func-
tions which may preserve more important contents in obtained
descriptions. The MOEA performs on a single-level decomposition
of an input image produced by DT-CWT and the performance of
the proposed method is examined in terms of generating optimal
quality of MDCs. Simulation results demonstrate an improvement
in the objective measure of peak signal to noise ratio (PSNR).
Numerical experiments, on standard test images with the mixed
Gaussian impulse noise, illustrate the effectiveness and efficiency
of our approach comparing to the state-of-the-art.

The rest of this paper is organized as follows. In Section 2,
multimedia transmission in lossy networks is provided. In Section
3, a brief description of using DT-CWT is given. Section 4 presents
the proposed wavelet based adaptive MDC generation method
using MOEA. Results and discussions will be provided in Section
5. The paper will be concluded in Section 6.

2. MDC for multimedia transmission

Multiple description coding (MDC) has been proposed as an
efficientmultimedia transmission approach to increase the robust-
ness of image and video transmission in lossy networks such as
Internet and wireless network. Most of MDC generation schemes
create equally important or balanced multiple descriptions from
the same source signal [1]. For instance, Fig. 1 shows a small com-
munication network model involving 10 nodes connected with 16
indirect links. In the multimedia communication, it is required to
create MDCs based on the network link capacities because achiev-
able bitrates of MDCs depend on the network link capacities and
the generated descriptions are transmitted through the multipath
in the lossy networks [1]. Let the server node (S) have two balanced
and independent MDCs (e.g. Description1 and Description2) to
send to the receiver node (T). Two MDCs are split into the packets
to transmit over two independent paths P1 (S–B–C–D–T) and P2
(S–F–E–H–T), respectively. Let us suppose that there are three de-
coders (side and central decoders) at the receiver as shown in Fig. 1.
Side decoder employs on a single description if one description is
received (MDC1 or MDC2) at the receiver node. On the other hand,
central decoder is employed on two different descriptions if both
MDCs are received and the best quality of image is obtained if both
MDCs are reached at the destination node. As a result, increasing
number of descriptions received at the receiver node will raise the
quality of image at the receiver side.

3. Wavelet transformation for MDC generation

The wavelet transformation methods have been widely used to
resolve many image processing problems. For instance, they are
used in denoising [26], edge detection [27], feature extraction [28],
speech recognition [29], biomedical imaging [30], image compres-
sion and image resolution segmentation [31,32] and others [33,34].
Besides this, manyMDC generation schemes have been using DWT
to create the MDCs [6,13]. However, DWT has several weaknesses
such as lack of shift invariance and phase information and limited
directionality. As an alternative to DWT, complex-valued wavelet
transforms have been proposed to overcome these difficulties [35].
One of the well-established complex-valued wavelet transforma-
tion methods is DT-CWT, which is used in this work to create
spatial domain of image into the frequency domain.

The purpose of using DT-CWT is to generate the real and imag-
inary parts of the transform in parallel decomposition trees by
applying low pass and high pass filters to an image [35]. Two
parallel decomposition trees are used for the columns of the in-
put image and other two parallel trees for the rows in a quad-
tree structure with 4:1 redundancy. After that, the four quad-tree
components of each DT-CWT coefficient are combined by using
arithmetic sumand difference operations to yield a pair of complex
coefficients [35]. Fig. 2 illustrates the obtained real and imaginary
parts of decomposition with the degree of directionality of the
CWT, e.g. θ = {±15, ±45, ±75}. Unlike the other transformation
methods, applying one level decomposition ofDT-CWT to the input
image provides one complex-valued low-pass subband, LL and six
complex-valued high-pass subbands, two HL, two LH , and two HH .
Let M involve all subbands or coefficients of the decomposition of
an input image and inverse DT-CWT (IDT-CWT) of M reconstructs
the original input image. The coefficient matrix M is used as a
search space in theproposedmethod to create the optimal quantiz-
ers and to design the filter to remove the noise on the descriptions.

4. Proposed adaptive MDC generation method

The purpose of using MDC generation methods is to generate
descriptions by using quantizers which include the reconstruction
and decision values [3]. Many description generation methods
have been using uniform quantizers and noise-free input images
to create MDCs. However, this is a difficult task, not robust to
noise, and time-consuming process. Besides this, in sequential
MDC generationmethods, it is required to know the reconstruction
and decision values of the first quantizer to design the second
quantizer for two balanced MDCs generation. In order to create
the third quantizer, it is necessary to know the details of the first
two quantizers and so on. For instance, Khelil et al. [13] proposed
sequential GA based MDC generation method to optimize single
objective function for designing optimal uniform quantizers. It
applied to the sub-bands of the decomposed input image obtained
by discrete wavelet transform (DWT) and results demonstrate that
the method finds optimum uniform quantizer values in the given
sub-bands. The optimization approach to find the global optimum
results in the sub-bands is not very efficient because the proposed
optimization approach attempts to find the optimum values in the
restricted intervals of the quantizers.

Complexity of the MDC coder problem has been raised signif-
icantly if an input image is affected by any type of noise such as
Gaussian or/and impulsive noise(s). In this case, MDC coder has to
take two different problems into account which are designing the
optimal side quantizers and removing noise on descriptions. One
way of solution is to first use denoising image filter to the noisy
image and then apply anyMDC generation scheme to createMDCs.
However, applying these methods sequentially will cause loss of
detail information (e.g. edge, line, sharpening of image details)
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Fig. 1. A small communication network model for MDCs transmission through multipath.

Fig. 2. The real and imaginary parts of the 2-D DT-CWT with the six degree of directionality: (a) real, −15◦; (b) real, −45◦; (c) real, −75◦; (d) real, 75◦; (e) real, 45◦; (f) real,
15◦; (g) imaginary −15◦; (h) imaginary, −45◦; (i) imaginary, −75◦; (j) imaginary, 75◦; (k) imaginary, 45◦; (l) imaginary, 15◦ .

on the noisy images. As a result, the quality of image may twice
be lowered because denoising causes blurring of high and low
frequency components of the input image and MDC coder also
decreases the quality of the resulting denoised image because of
quantizers. Therefore, it is necessary to provide trade-off between
twodifferent problems and essential to design anewadaptiveMDC
generation scheme and a denoising filter to solve this challenging
problem. In thiswork, to achieve this, MOEA has been used to solve
these two problems and provide trade-off between them.

The proposed method is used to obtain optimal parameters to
design the denoising filter to remove the mixed Gaussian impulse
noise and create optimal and adaptive quantizers simultaneously
which can be uniform or non-uniform to generate descriptions at
different target bitrates. To achieve this, noisy input image is first
transformed from the spatial domain into the frequency domain by
using the DT-CWT. By applying the wavelet transformation tech-
nique, six different subbands or set of coefficients are obtained and
eachof themhas different signal energyweight in the overall trans-
formed image. After that, MOEA employs on the set of coefficients
by iteratively minimizing two different fitness functions to design
the optimal quantizers and reduce themixednoise on descriptions.
Thus, optimum decision and representation values into the quan-
tizers are evaluated to generate balanced descriptions and param-
eters of the image filter are estimated simultaneously. As a result,
the proposed method generates optimal quality MDCs, efficiently.
Note that, bitrate and distortion value of each description is same
and generated descriptions are transmitted through the multipath
in the lossy networks. At the destination node, acceptable quality
of image is received if only one description received and one side
decoder is used in this case. On the other hand, better quality of
image is obtained if more than one description received and the
central decoder is used at the receiver side. In general, a block
diagram of the proposed method is shown in Fig. 3.

4.1. Optimization approach using multi-objective evolutionary algo-
rithm

Unlike the other search space based algorithms, MOEA opti-
mizes more than one objective function simultaneously [36–41].
By applying MOEA to a multi-objective optimization problem,
more than one equally important solution or pareto solutions can
be obtained in each iteration. Many optimization problems have
multiple objectives and constraints to bring promising solution for
the optimization problems. A multi-objective optimization prob-
lem (MOP) is formulated as:

minimize F (x) = (f1 (x) f2 (x) ... fn (x))T (1)

where F (x) has n objective functions and x = [x1, x2, . . . , xm] is
the vector of decision variables. One way of solution for multi-
objective optimization problem is to transform it into the single
optimization function. There are different techniques to obtain
the single objective function from many objective functions. For
instance, weighted sum of the objective functions and Euclidean
normhave beenmostly used in differentmulti-objective optimiza-
tion problems to obtain the single objective function [42]. After
that, a single objective search space based algorithm such as GA
is employed to find the optimum result. However, improvement
of one objective may cause deterioration for another objective
when the algorithm performs finding the best optimum result.
According to Deb et al. [36], it is shown that conversion of multi-
objective in a single optimization problem does not give efficient
result in terms of accuracy. MOEAs have been very popular in
solvingMO problems and they are proposed and developedmostly
based on the EAs, particularly GA (description of the GA is provided
in [42]). Also, they have been applied to resolve different problems
such as face recognition [43], image segmentation [44] and change
detection in satellite images [45]. The two goals of aMOEA are— 1)
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Fig. 3. Block diagram of the proposed method.

to find a set of solutions as close as possible to the Pareto Front, 2) to
find a well distributed set of solutions [40]. To achieve these goals,
several MOEAs have been proposed [36,39]. For instance, Schaffer
et al. [38] proposed one of the first MO method which is called
Vector Evaluated Genetic Algorithm (VEGA) to solveMO problems.
The method uses number of sub-populations and, at each gener-
ation a number of sub-populations was generated by performing
proportional selection according to each objective function. By
using VEGAmethod, it is hard to produce Pareto-optimal solutions
effectively. Fonseca et al. proposed a MOGA method which uses
different ranking scheme to obtain Pareto-optimal solutions. The
method is easy to implement but it is highly depending on an
appropriate selection of the sharing factor. The Non-dominated
Sorting Genetic Algorithm (NSGA) has been proposed by Srinivas
et al. which is explained in [46]. In the NSGA, the population
is first ranked on the basis of nondomination before selection
technique is performed. Thus, all the nondominated individuals
are categorized in one group. NSGA is an effective method which
can solve any number of objectives [46] in both maximization and
minimization problems. Besides of these methods, other MOEAs
have been proposed to resolve different MO problems [40,47,48].
The common problem of these methods is that they cannot ef-
fectively find Pareto-optimal solutions to resolve MO problems.
The elitist nondominated sorting genetic algorithm (NSGA-II) has
been proposed [36] that uses the non-dominated sorting (NDS)
scheme and a crowding measure to rank individual designs. The
method is an effective method to produce and obtain Pareto-
optimal solutions. In this paper, NSGA-II has been used to resolve
the MO-MDC generation problem. There are several reasons to use
NSGA-II for solving the corresponding problem. It is an efficient
and robust algorithm as well as effective approach for finding
Pareto-optimal solutions when there are multiple objectives in
a problem. In addition, it is proved that NSGA-II provides more
promising results than the other MOEA approaches such as the
strength Pareto evolutionary algorithm (SPEA-2) [48].

Previously proposed MDC scheme methods use a single ob-
jective function for the MDC generation scheme, and due to the
noise in the given input image, they fail removing noise on the
MDCs. In order to solve this challenging problem, denoising filter
can be used after the MDC scheme method. However, using this
solution approach is not effective. In this work, NSGA-II is adopted
to split the information from a given noisy source image into the
optimal quality MDs. The steps of the evolutionary multiobjective
optimization using NSGA-II are given in details below:

(1) The generation number g , population size K , crossover rate
pc and mutation rate pm are initialized.

(2) Population initialization is an important step in the algo-
rithm because the performance and efficiency of a search
space algorithm depend on the representation scheme of
a chromosome in the population. Fig. 4 shows a chromo-
some to produce one single description, a chromosome is

Fig. 4. Illustration of a chromosome which is used to create one description.

represented with the decision and reconstruction values
d1, r1, d2, r2, d3, r3...,dn. In the proposed method, restricted
ranges of real numbers are used to initialize the chromo-
somes where each one is randomly chosen between the real
number [Λmin, Λmax]εR, where Λmin is the lowest and Λmax
is the greatest coefficient value in the decomposed sub-band
of the input image.

(3) There are two fitness functions f1 and f2 as defined in Eqs. (2)
and (6). The former equation aims to maximize the quality
of MDCs by finding the optimal decision and reconstruction
values whereas the latter one aims to maximize the noise
reduction by finding optimal parameters.

(4) Tournament selection strategy is used in the NSGA-II algo-
rithm to select two parents from the population P . After
that, genetic operators are applied to the selected parents
(individuals or chromosomes) to create new individuals or
offspring, as shown in Fig. 5. Crossover and mutation op-
erators are the well known genetic operators which are
also used in the algorithm, respectively. Crossover operates
on two chromosomes and creates offspring by combining
segments of both chromosomes. Thus, there is a transfer
of genes between the parents which leads to find better
result.Mutation operator follows the crossover operator and
produces random changes of genes in various offspring to
avoid getting stuck in a local optimum.

(5) Obtained new individuals are added in the new population
Q . Then, both the current P and the new population Q are
joined; the resulting population, Z , is ordered according
to a ranking procedure and a density estimator known as
crowding distance. Finally, the population P is updated with
the best individuals in Z and the population P is used for the
next generation creation in the next iteration.

(6) These steps are repeated until the termination condition is
satisfied.

(7) There are two different outputs which are a set of Descrip-
tions orMDCs and a set of Parameters for the denoising filter.

Fitness Function: The proposed multi-objective functions are
employed in the MOEA to create d descriptions. Let the input
image I and ith generated description di be of size H × W pixels,
and consist of one spectral band at bitrate R. In the problem,
two objective functions are used to obtain adaptive quantizers
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and optimal filter simultaneously. In order to create optimum and
balanced descriptions of an image, one fitness cost function is used
to obtain optimum decision and reconstruction values for each
chromosomewhen another is used to estimate optimal parameters
for image filter design to removemixed Gaussian impulse noise on
the descriptions. Themethodminimizes two objective functions f1
and f2 by estimating the average distortion of k descriptions at the
server node to transmit good quality of image in the lossy network.
The first fitness cost function f1 between the noisy image and the
generated di descriptions, i.e.
minimize F = [f1 f2]

f1 =
1
k

k∑
i=1

√
1

HxW

∑
∀x,y

(
I(x, y) − di(x, y)

)2
for Ri

= R(i+1), i = 1, 2, . . . ,m

(2)

Each description rate R is defined as:

R = −

∑
∀j

p(aj)log(p(aj))(bit per pixel) (3)

where x, y denote the pixel coordinates of the noisy image I and
p(aj) is the probability of the pixel intensity di, which is estimated
from the normalized histogram. The first objective function f1
computes the average root mean square error between the k dif-
ferent generated descriptions at different bitrates and noisy input
image at each iteration in the MOEA. Thus, using the first fitness
function provides to design multi optimal quantizers to produce
descriptions at different bitrates. Note that, lower average root
mean square error provides higher quality of descriptions of the
input image at different bitrates so theMOEAminimizes the fitness
function f1. However, the generated descriptions still contain noise
so that it is necessary to reduce or remove it. To achieve this, the
second objective function f2 which estimates optimal parameters
of denoising filter is explained with further details in the following
subsection.

4.2. Parameter estimation and optimization for image denoising

Image denoising is one of themost important tasks in the image
processing applications such as image segmentation, multimedia
communication, image feature extraction, image registration, stor-
age and image retrieval. The presence of noise in the images will
lead to serious impacts to resolve such problems. Besides this,
it affects the quality of image as the Peak Signal to Noise Ratio
(PSNR) of the images is reduced and it is necessary to improve
it before performing image analysis tasks. The major challenge
in designing the image filter for images is to remove the noise
efficiently without removing the details of information such as
edges, lines etc. [49].

Different models have been proposed for image denoising in-
cluding ROF model [50], total variation model (TVM) [49], bias
model (BM) [51], graphical model (GM) [52] and multiplicative
noise model (MNM) [53]. They are shown as great approaches for
removal of a variety of noise like Gaussian noise, salt-and-pepper
noise, uniform noise, Rayleigh noise, exponential noise, Gamma
noise and poison noise. However, they have ability to remove one
noise type on the images and the parameters used in the models
are not optimal. In this paper, we have used a denoising filter
which combines the bilateral filter (BF) [54] and noise removal
algorithm [55] to remove the mixed Gaussian noise and impulse
noise (salt-and-pepper noise) on the images [56]. However, it is
necessary to use optimal parameters in the noise reduction filter
to remove the noise efficiently. Therefore, the proposed method is
used to optimize parameters to design effective image filter.

Fitness Function: In the proposed method, parameters are es-
timated from the descriptions which are generated based on the

first fitness function f1 at each iteration. Thus, different parameter
values can be obtained at each iteration and optimum parameters
can be achieved to design the image filter. Thus, the second fitness
function f2 is used to estimate and update the parameter values
of denoising method which will be used to decrease the effect of
the noise on the descriptions. To achieve it, the fitness function f2
computes themean absolute error between the kdenoiseddescrip-
tions and noisy input image. Note that, lower the mean absolute
error provides higher quality of descriptions so it is necessary to
minimize the fitness function f2. As a result, important details
such as edge and features of the input image are better preserved
in the descriptions by optimizing two different fitness functions
simultaneously using theMOEAwhich provides trade-off between
the two fitness functions. Let di and d̂i be the ith description and
denoised description, respectively. Assuming that the pixels of a
local processing block δ of size (2ri + 1) × (2ri + 1) are denoted as
s1, . . . , sℓ, . . . , sN where sℓ is in the center, d̂i(x, y) is the output and
N is the number of pixels of the block δ. The image denoisingwhich
reduces mixed Gaussian impulse noise can be defined as [56]:

d̂i(x, y) =

∑N
j=1 wj.sj∑N
j=1 wj

wj = α(di(x, y); µi, σi)
(
1
β

β∑
k=1

(sℓ − sk)
) (4)

where β denotes the number of nearest neighbors in a small
window W size of 3 × 3, α(I(x, y); µi, σi) is the Gaussian curve
membership function of the ith description, µi, σi and ri are the
parameters of ith description which are mathematically described
as

α(di(x, y); µi, σi) = exp
(

−1
2

(di(x, y) − µi

σi

)2)
µi =

1
H × W

H∑
x=1

W∑
y=1

di(x, y)

σi =

√ 1
H × W

H∑
x=1

W∑
y=1

(
di(x, y) − µi

)2
ri =

µi

σi
, β =

µi

σi

(5)

As a result, there will be k different parameters of µ, σ , r and β

based on the generated descriptions. Thus, k different filters can
be designed by using these parameters. In order to optimize the
parameters, the second fitness function f2 is defined as:

f2 =
1
k

k∑
i=1

1
H × W

∑
∀x,y

|
(
di(x, y) − d̂i(x, y)

)
| (6)

By minimizing the second fitness function, we can reduce the
mixed Gaussian impulse noise while preserving the image de-
tails on the descriptions. After that, descriptions are transmitted
through the lossy networks.

5. Validation and experimental results

The experiments presented in this section aim to maximize the
quality of image data receiving at the client nodes in the lossy
networks. Besides this, the performance of the proposed method
is examined in generating MDCs in terms of quality estimation
with different achievable bitrates and discussed with respect to its
robustness to the mixed Gaussian noise and impulse noise (salt-
and-pepper) in images. The proposed method is the combination
ofMulti-Objective Evolutionary Algorithm and Dual Tree-Complex
Wavelet Transform (MOEA–DTCWT) and it is compared with the
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Fig. 5. Illustration of genetic operators on two different chromosomes.

Fig. 6. Test Images: (a) Lena, (b) Castle, (c) Pepper, (d) Barbara, (e) Boat and (f)–(j) Illustration of part of test images corrupted by the Gaussian noise of zero mean and
standard deviation σ = 0.06, and impulse noise p = 0.06. Signal-to-Noise Ratio (SNR) results of corrupted test images (f)–(j) are 10.8326 dB, 11.8904 dB, 11.4062 dB,
11.3160 dB, and 11.2992 dB, respectively.

Table 1
Parameters of the MOEA.
Parameter Value

Population size (P) 150
Pm 0.1
Pc 0.8
Number of generations 200

other MDC generation methods which are Multiple Description
Wavelet Based Image Coding (MD-DWT) [6], Multiple Description
Scalar Quantization (MDSQ) [3] and Genetic Algorithm Discrete
Wavelet Transform based MDC generation (GA-DWT) [13]. In this
work, five different one spectral band imageswhich are LENA, CAS-
TLE, PEPPER, BARBARA and BOATwith the resolution of 512× 512,
have been used as test images which are shown in Fig. 6. Table 1
lists the parameters used for the MOEA and they are selected
empirically.

5.1. Robustness of the MDC generation methods to the mixed
gaussian impulse noise

In order to verify the robustness of the proposed method to the
mixed Gaussian impulse noise, we used two different noise types
which are Gaussian noise of zero mean and standard deviation σ

and salt-and-pepper noise p. In this experiment, we consider the
standard deviationσ of the zero-meanGaussian varies from0.02 to

0.1 with increment of 0.02 and salt-and-pepper noise varies from
0.02 to 0.1 with increment of 0.02. Besides this, total added noise
τ is estimated by using τ = σ + p and both Gaussian noise and
salt-and-pepper noise are added to the five different test images
to understand and analyze the robustness performance of the
proposed method over existing methods. As shown in Fig. 6, it is
obvious that adding noise to the whole image will cause a major
distortion in the context of the images and noise dominates most
of pixels in the images such as edges, lines, and other features.

In this experiment, the implemented algorithms have been
used to generate two side descriptions from the given noisy im-
ages. Each method was simulated 10 times to create two balanced
MDCs at the bitrate R = 1.0 bpp and it was performed on the
coefficients of the three different noisy images 1-level decomposed
by the DT-CWT. In order to understand and analyze the results
clearly, the mean of 10 PSNR measurements is used, which each
of PSNRs is estimated by PSNR = 10 log 2552

MSE where MSE is the
mean squared error between the original image and the generated
description. The estimated PSNR results are shown in Fig. 7(a), (b),
(c), (d) and (e) for different test images, respectively. The results
are obtained by applying different additive noise values on the
input images. Note that the noise level τ varies from 0.04 to 0.2
with step 0.04. In Fig. 7, it is clearly seen that the highest quality
of description is obtained by using the proposed method and the
lowest quality is estimated by using the MD-DWT method [3].
Moreover, comparison between measurements obtained with the
proposed method shows that the least obtained PSNR, which is
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Fig. 7. The robustness performance analysis of the MDC generation methods to the mixed Gaussian impulse noise. (a) Lena Image, (b) Castle Image, (c) Pepper Image, (d)
Barbara, (e) Boat.

19.7 dB, belongs to the BARBARA image with the highest level
of noise (τ = 0.2). However, even for the worst-case scenario,
we can see that the proposed method has significant performance
improvement in terms of PSNR when compared with GA-DWT
with 17.7 dB, MDSQ with 17.1 dB, and MD-DWT with 15.8 dB.
Thus, the proposed method creates the highest quality of one side
description at the difference levels of noise and overcomes the
problems of noise artifacts on the input images. However, other
MDC generation methods suffer from noise artifacts and they are
unable to remove noise on descriptions which cause low quality
of MDC creation. Consequently, the proposed method is robust
to mixed Gaussian impulse noise and it provides the greatest
performance to generate a side descriptionwith the lowest average

distortion at target-bitrate. Moreover, beside from the effect of
noise on the results of compared methods, another reason that
MD-DWTandMDSQprovide theworst results is due to the fact that
they are not using any optimization approach to design quantizers.
On the other hand, GA-DWT and the proposed method show that
using optimization techniques improve the performance of MDC
generation methods.

5.2. Performance comparison of the MDC generation methods

In the second experiment, five standard test images, which are
shown in Fig. 6(f)–(j), are used to compare the proposed method
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Fig. 8. MDC generation using Lena and Castle test images. (a) Part of original Image, (b) Noisy Image corrupted by the Gaussian noise of zero mean and σ = 0.06, and
impulse noise p = 0.06, (c), (d), (e) Proposed Method, (f), (g), (h) GA-DWT [13], (i), (j), (k) MD-DWT [6], (l), (m), (n) MDSQ [3].

with the other MDC generation methods. The implemented meth-
ods have been applied to generate two side quantizers. In the
proposed method, we generate two descriptions by minimizing
the distortion and finding optimal parameters of image denoising.
In contrast, the other compared methods generate the descrip-
tions without applying any denoising method. Each implemented
method was executed 20 times at total noise τ = 0.12 to create
two optimal side quantizers for two balancedMDC generation and
obtained results are shown in Fig. 9(a)–(e) with different bitrates
which vary from 0.4 to 2.2 bpp. Fig. 8 shows that the higher the
bitrate, the better the description quality is, which simply leads to
the higher PSNRs. For instance, Fig. 9(a) illustrates the PSNR results
for one side description obtained from noisy LENA image. In the
proposed method, the PSNR values vary from 26 dB to 36.2 dB,
whereas the PSNR values in the MDSQ, MD-DWT, and GA-DWT
vary from 20 dB, 20.8 dB, and 22 dB to 28.2 dB, 29.4 dB, and 30.1
dB, respectively. From Fig. 9 it is obvious that increasing the bi-
trate does not significantly improve the quality of the descriptions
generated by the state-of-the-art methods. On the other hand, the
proposed method remarkably improves the PSNR values because
it provides the trade-off between noise reduction and preserving

image features. Fig. 8 illustrates the side and central descriptions
of part of Lena and Castle images, respectively. The methods are
used to create two side descriptions of input noisy images of LENA
(see the first and second columns of Fig. 8) and CASTLE (see the
fourth and fifth columns of Fig. 8). Their central descriptions which
are the combination of two side descriptions are illustrated in
the third and sixth columns. Based on the qualitative results, it
is obvious that the compared MDC generation methods cannot
design optimal quantizers and cannot be successful to reduce any
type of noise. These will simply cause low quality of description
generation. As seen in Fig. 8, the GA-DWT [13] provides the higher
performance than the MDSQ and MD-DWT methods as it designs
optimal quantizers. However, this method provides lower perfor-
mance than the proposed method because it uses only one single
objective function without considering noises on the input images
to create MDCs. The proposed method MOEA–DTCWT appears to
be the most resistant to noise, thereby reducing the distortion as
well as preserving the detailed information of descriptions gen-
erated. Besides this, the proposed method achieves the highest
performance among all the compared methods even if the noise
level increases on the input images.
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Fig. 9. Average quantitative results at different bitrates. Average PSNR results for; (a) Lena, (b) Castle, (c) Pepper, (d) Barbara, (e) Boat.

Table 2
Comparison of execution time (seconds) of the algorithms for the Lena image.
Method Two MDCs Five MDCs Twelve MDCs

Proposed method 8.82 8.91 8.96
GA-DWT [13] 9.53 28.16 56.89
MD-DWT [6] 4.86 9.55 22.58
MDSQ [3] 3.18 9.16 19.14

Tables 2–4 illustrate the comparison of the CPU time required to
execute the algorithms to find optimal MDCs for three test images
(LENA, CASTLE and PEPPER). The implemented algorithms have
been used to produce two, five and twelve descriptions for each
test image, respectively. For generation of two MDCs in terms of
execution time, the proposed method is faster than GA-DWT but
slower thanMD-DWTandMDSQ.On the other hand, for generation

Table 3
Comparison of execution time (seconds) of the algorithms for the Castle image.
Method Two MDCs Five MDCs Twelve MDCs

Proposed method 9.63 9.76 9.88
GA-DWT [13] 10.12 32.12 63.11
MD-DWT [6] 3.94 12.23 25.18
MDSQ [3] 3.77 10.08 23.04

of five and twelve MDCs, the proposed method provides the best
execution time compared to the other algorithms. For instance,
it takes 4.91 and 4.96 s for execution for Lena image to generate
five and twelve descriptions, respectively. As a result, from this
perspective, the proposed method requires less execution time to
generate five and twelve MDCs. The proposed method requires
less execution time because it finds pareto optimal solutions and
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Fig. 10. MDC generation using noisy Castle test image shown in Fig. 6(g). (a)
Proposed Method, (b) TV denoising method with GA-DWT [13], (c) TV denoising
method with MD-DWT [6], (d) TV denoising method with MDSQ [3].

Table 4
Comparison of execution time (seconds) of the algorithms for the Pepper image.
Method Two MDCs Five MDCs Twelve MDCs

Proposed method 9.79 9.86 9.92
GA-DWT [13] 6.12 28.12 58.15
MD-DWT [6] 3.23 10.23 23.45
MDSQ [3] 3.96 11.12 19.17

design quantizers simultaneously to create many optimal MDCs.
However, other MDC generation methods sequentially design the
quantizers, which are high time-consuming and not effective pro-
cess for MDC generation.

5.3. Effects of denoising method on descriptions

In order to understand the effects of denoising method on
descriptions, we compare the proposed method with the conven-
tional approach in terms of producing optimal quality of MDCs. In
the conventional approach, it is first necessary to reduce or remove
the noise on the input image and then MDC generation methods
are applied to the denoised image to create the descriptions. In
this experiment, a Total Variation denoisingmethod (TV) proposed
by Chambolle et al. [57] is first applied to the noisy image and
then the state-of-the-art MDC generations methods are applied
to the resulting denoised image. Note that in this experiment, the
descriptions are created with the bitrate R = 1 bpp.

Figs. 10 and 11(a)–(d) illustrate the side descriptions generated
by using the proposedmethod, TV-GA-DWT, TV-MD-DWT and TV-
MDSQ, respectively. According to the qualitative results, it is seen
that although the TV-based denoising approach reduces noise, it
causes undesired artifacts such as blurring, visuality loss of some
edge(s) and feature(s) etc. on the descriptions generated. More-
over, Table 5 shows the quantitative results of one description
and the compared MDC generation methods with TV-based de-
noising approach give the lower PSNR results than the proposed
method. From the both quantitative and qualitative results, we
can conclude that applying denoising method to the noisy input
images improves slightly the performance of the MDC generation
methods, but they are not able to preserve detailed information

Fig. 11. MDC generation using noisy Pepper test image shown in Fig. 6(h). (a)
Proposed Method, (b) TV denoising method with GA-DWT [13], (c) TV denoising
method with MD-DWT [6], (d) TV denoising method with MDSQ [3].

Table 5
Quality of one description with PSNR results.
Method LENA CASTLE PEPPER

Proposed method 27.8 25.2 25.6
TV-GA-DWT [13] 26.25 24.72 24.85
TV-MD-DWT [6] 25.71 23.81 24.52
TV-MDSQ [3] 24.76 22.92 23.48

on descriptions. This is due to the fact that using of two different
methods (e.g. TV and MDSQ) sequentially causes more loss of
detail information as non-optimal quantizers are used to create
MDCs from the imagewhich includes undesired artifacts. Although
the compared methods are used with the denoising method, the
proposedmethod provides the best PSNR resultswith 27.8 dB, 25.2
dB, and 25.6 dB and TV-MDSQ provides the least PSNR results with
24.76 dB, 22.92 dB, 23.48 dB for LENA, CASTLE, and PEPPER images,
respectively.

The purpose of the next experiment is to evaluate the perfor-
mance of theGA andMDmethodswith theDT-CWT. To achieve the
results, the TV denoising technique is first applied to the noisy test
images and then the GA orMDwith DT-CWT is applied to generate
MDCs. In this experiment, two different noisy test images have
been usedwhich are Lena and Castle images corrupted by different
τ values. Based on the PSNR results in Fig. 12, the proposedmethod
provides the best performance comparing to the TV-GA-DTCWT
and TV-MD-DTCWT. The main reason is that the proposed method
optimizes the parameter values for designing image filter as well
as optimizing quantizers to generate good quality of MDCs. Fur-
thermore, the TV-GA-DTCWT and TV-MD-DTCWT provide better
PSNR results as compared to the TV-GA-DWT and TV-MD-DWT,
respectively. This is due to fact that TV-GA-DWT and TV-MD-DWT
are using DWTwhich has disadvantages such as lack of shift invari-
ance, limited directionality when extended to higher dimensions
and lack of phase information.

5.4. Quality analysis of receiving MDCs

In this experimental setup, three test images (see Fig. 6(f)–
(h)) are firstly denoised and then transmitted from a server to a
client node in the lossy network. The performance of the proposed
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Table 6
Average rankings of the MDC generation schemes using the non-parametric statis-
tical procedure.
Method Friedman Friedman aligned Quade

Proposed method 1.33 9.66 1.24
GA-DWT [13] 1.66 10.33 1.75
MD-DWT [6] 3.11 27.11 3.02
MDSQ [3] 4.00 33.11 4.0
Statistics 33.15 7.26 25.42
p-value 1.25 × 10−6 0.1206 2.44 × 10−9

method MOEA–DTCWT is evaluated against TV-GA-DWT, TV-MD-
DWT, and TV-MDSQ in terms of quality estimation of receiving
image at the client node. Notably the received descriptions are
decoded at the destination node. Themain goal of this experiments
is to understand whether increasing number of descriptions can
improve the quality of received image as some of the MDC packets
can be lost in the lossy networks because of several reasons such
as: (1) delayed packet dropping and (2) congestion may occur
over lossy transmission networks. Fig. 13 denotes the comparison
results between the average PSNR and the number of descriptions
received. In order to estimate the average quantitative results, the
algorithms generate different number of descriptions (i.e. 2, 3, 5, 8,
and 12) at bitrate R = 0.25 bpp and the average PSNR is estimated
as follows:

PSNR =
1

mn1n2

m∑
k=1

n1∑
i=1

n2∑
j=1

PSNRk,i(Rj) (7)

where m is the number of descriptions with n2 different bitrates
and n1 is the number of times that MDCs are generated which
is 10 times in this experiment. Fig. 13 shows that increasing the
descriptions from 2 to 5 sharply increases the quality of received
images in allmethods. However, increasing number of descriptions
from 5 to 8 cannot always improve the performance except for
the proposed method (see Fig. 13(a)). From Fig. 13 it is obvious
that in all methods, increasing the number of descriptions to 12
always decreases the quality of received images as combining
more MDCs degrades important features of reconstructed images
due to the existence of noise. Thus, it causes distortion and the
results prove that using denoising methods cannot remove the
noise on MDCs completely but using proposed approach provides
more promising results than the TV-GA-DWT, TV-MD-DWT and
TV-MDSQ. Amongst the comparedMDC generationmethods, using
MOEA–DTCWT provides the most effective multimedia communi-
cation in terms of delivering good quality of images even if only
two MDCs are successfully received at the client.

5.5. Comparison of MDC generation methods using non-parametric
tests

In this subsection, non-parametric test results are shown and
examined for comparing the proposed method MOEA–DTCWT
with the existing MDC generation methods [58,59]. In order to
achieve the test results in Table 6, Friedman, Friedman Aligned
and Quade non-parametric tests are applied to the average of all
results showing in Figs. 7, 9 and 12. The purpose of using Friedman,
Friedman Aligned and Quade non-parametric tests is to determine
whether there are significant differences among the algorithms
considered over given set of data. These tests obtain the ranks of
the algorithms for each individual data set, i.e., the best performing
algorithm receives the rank of 1, the second best rank 2, etc.

Table 6 depicts the average ranks computed using Friedman,
Friedman Aligned and Quade non-parametric tests. Based on the
results, proposed method MOEA–DTCWT is the best performing
algorithm of the comparison, with the average rank of 1.33, 9.66,

and 1.24 for the Friedman, Friedman Aligned, and Quade tests,
respectively. This shows that proposed method provides great
performance to design quantizers for MDCs generation and proves
the improvement of the MOEA–DTCWT over the rest of MDC gen-
eration methods. The p-values computed through the statistics of
each of the tests considered (1.25 × 10−6, 0.1206, 2.44 × 10−9).
The Iman Davenport statistic and p-value are computed 84.57 and
1.51 × 10−16, respectively.

5.6. Discussion

In this paper, an MDC generation method using MOEA with
the DT-CWT is proposed for effective multimedia transmission.
Five different test images have been used to understand and an-
alyze the performance of the proposed method. According to the
results, it is shown that the proposed method finds the optimal
reconstruction and decision values to design different and optimal
quantizers to generate MDCs at different bitrates. Also, it obtains
optimal parameter values in image denoising to reduce the mixed
Gaussian impulse noise in the descriptions. Moreover, the pro-
posed method provides the best PSNR results of the generated
MDCs comparing to the other MDC generation methods if the
input image is corrupted by the mixed Gaussian impulse noise.
Besides of this, the proposed method requires less execution time
comparing to the other MDC methods to generate five and twelve
MDCs. Furthermore, non-parametric test results using Friedman,
Friedman Aligned and Quade non-parametric tests are provided
and examined for comparing the proposedmethodMOEA–DTCWT
with the other MDC generation methods. Based on the statistical
results, the proposed method is the best performing algorithm
amongst the MDC generation methods.

6. Conclusion

In this paper, we have presented a novel MDC generation
method which is robust to the mixed Gaussian impulse noise.
The method uses dual-tree wavelet based image coding with
the Multi-objective Evolutionary Algorithms (MOEAs) for effective
multimedia transmission in lossy networks. The purpose of the
proposed method is to optimize two different objective functions
for designing image filter with optimal parameters and creating
optimal and adaptive side quantizers. Thus, the method reduces
the mixed Gaussian impulse noise and produces optimal quality
MDCs which are then transmitting through lossy networks. To
achieve it, Dual-Tree Complex Wavelet Transform (DT-CWT) is
first applied to the noise input image to produce the sub-bands
or set of coefficients. After that, MOEA is used to provide trade-
off between reducing noise and generating good quality MDCs by
finding optimal parameters of image denoising and by obtaining
the decision and reconstruction values in the set of coefficients
for designing optimal and adaptive quantizers. Simulation results
illustrate that MOEA performs well to optimize two objective
functions simultaneously for optimal description generation com-
paring to the existing MDC generation methods. Consequently,
proposed multi-objective MDC generation method is robust to
mixed Gaussian impulse noise and, designs optimal and adaptive
side quantizers to create MDCs with good quality for effective
multimedia transmission over lossy networks.
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Fig. 12. Quantitative results estimated based on different τ values. (a) PSNR results for Lena Image, (b) PSNR results for Castle Image.

Fig. 13. Average quantitative results estimated based on number of description received. (a) Average PSNR results for Lena Image, (b) Average PSNR results for Castle Image,
(c) Average PSNR results for Pepper Image.
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