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ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √
sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing 

bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 
2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, 
results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum 
are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields 
with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in 
the low transverse momentum region and shows no significant dependence on the centrality of the 
interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression 
similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are 
compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical 
calculations.

© 2020 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Quarkonium resonances, i.e. bound states of a heavy quark (Q) 
and anti-quark (Q), are well-known probes of the formation of a 
quark–gluon plasma (QGP) which can occur in heavy-ions colli-
sions. The high colour-charge density reached in such a medium 
can, in fact, screen the binding force between the Q and Q, lead-
ing to a temperature-dependent melting of the quarkonium states 
according to their binding energies [1].

A suppression of bottomonium resonances, the bound states 
formed by b and b quarks, was observed in Pb–Pb collisions, at the 
LHC energies of 

√
sNN = 2.76 TeV and 

√
sNN = 5.02 TeV by the AL-

ICE [2,3] and CMS [4–6] experiments. All the ϒ resonances show a 
reduction in their production yields compared to pp interactions at 
the same centre-of-mass energy, scaled by the number of nucleon–
nucleon collisions. Furthermore, the magnitude of the suppression 
is significantly different for the three resonances and it increases 
from the tightly bound ϒ(1S) to the loosely bound ϒ(3S) [4–6], 
as expected in a sequential suppression scenario, with the binding 
energies of the ϒ states ranging between ∼1 GeV for the ϒ(1S) 
to ∼0.2 GeV for the ϒ(3S) [7]. Modifications to the bottomonium 
production might also be induced by cold nuclear matter (CNM) 
mechanisms not related to the formation of the QGP. The modifica-
tion of the quark and gluon structure functions for nucleons inside 
nuclei, modelled either via nuclear parton distribution functions 
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(nPDFs) [8–11] or through a Color Glass Condensate effective the-
ory [12], or the coherent energy loss of the QQ pair during its path 
through the cold nuclear medium [13] are examples of CNM effects 
which can influence quarkonium production [14]. The size of these 
effects is usually assessed in proton–nucleus collisions. These in-
teractions also allow for the investigation of additional final state 
mechanisms, which can modify the production in particular of the 
more loosely bound resonances [15–17].

ALICE has published results on the modification of the ϒ(1S) 
production yields as a function of the centre-of-mass rapidity 
(ycms) using the 2013 p–Pb collisions data sample at 

√
sNN =

5.02 TeV [18]. The size of the observed suppression was found 
to be similar in the forward and backward rapidity regions. The-
oretical calculations based on the aforementioned CNM mecha-
nisms fairly describe the forward-ycms measurements, while they 
slightly overestimate the results obtained at backward rapidity. 
Furthermore, the measurement of the ϒ(2S) to ϒ(1S) ratio [18], 
ϒ(2S)/ϒ(1S), was consistent, albeit within large uncertainties, with 
the one obtained in pp collisions [19], suggesting CNM effects 
of the same size on the two resonances both at forward and 
backward rapidity. Consistent results were also obtained by the 
LHCb experiment [20] in a similar kinematic region. However, it 
should be noted that ATLAS [21] and CMS [22] measurements of 
ϒ(2S)/ϒ(1S) at midrapidity suggest a stronger suppression of the 
ϒ(2S) with respect to the ϒ(1S) state, as expected if final state 
effects are at play [15].

In 2016, the LHC delivered p–Pb collisions at 
√

sNN = 8.16 TeV. 
The increase both in integrated luminosity, about a factor of 2 
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larger than the one collected in 2013, and in the bottomonium 
production cross section, due to the higher centre-of-mass energy, 
allows a more detailed study of the production of the ϒ states. In 
this paper, results on the ϒ(1S) production as a function of ycms, 
transverse momentum (pT) and centrality of the collisions will 
be discussed and compared with the measurements performed in 
p–Pb collisions at 

√
sNN = 5.02 TeV and with theoretical calcu-

lations. A comparison of the ϒ(2S) and ϒ(3S) to ϒ(1S) produc-
tion yields and nuclear modification factors, integrated over ycms, 
pT and centrality, will also be presented. Finally, the results will 
be compared with the corresponding measurements obtained by 
LHCb at the same energy [23]. It should be noted that all the pre-
sented results refer to the ϒ inclusive production, i.e. to ϒ either 
produced directly or coming from the feed-down of higher-mass 
excited states.

2. Experimental apparatus and data sample

A detailed description of the ALICE apparatus and performance 
can be found in [24,25]. The forward muon spectrometer [26] is 
the main detector used in this analysis. It consists of five tracking 
stations made of two planes of Cathode Pad Chambers each, fol-
lowed by two trigger stations each one composed by two planes 
of Resistive Plate Chambers. A 10 interaction-length (λI) absorber, 
placed in front of the tracking system, filters out most of the 
hadrons produced in the collisions. Low-momentum muons and 
hadrons escaping the first absorber are stopped by a second 7.2 
λI-thick iron wall, placed in front of the trigger stations. The mo-
mentum of the particles is evaluated by measuring their curvature 
in a dipole magnet with a 3 T×m integrated field. The muon 
spectrometer measures muons in the pseudorapidity interval −4 <
η < −2.5 in the laboratory reference frame. It also provides single 
and unlike- or like-sign dimuon triggers based on the detection 
in the trigger system of one or two muons, respectively, having a 
transverse momentum higher than a programmable threshold set 
to pT,μ = 0.5 GeV/c. This threshold is not sharp and the single 
muon trigger efficiency reaches a plateau value of ∼98% at about 
pT,μ ∼ 1.5 GeV/c.

The primary interaction vertex of the collision is reconstructed 
using the two innermost layers of the Inner Tracking System (Sil-
icon Pixel Detector, SPD) [27], extending over the pseudorapidity 
intervals |η| < 2 and |η| < 1.4, respectively. The V0 detector [28], 
composed of two sets of scintillators covering the pseudorapidity 
intervals 2.8 < η < 5.1 and −3.7 < η < −1.7, provides the lumi-
nosity measurement, which can also be obtained independently 
from the information of the T0 Cherenkov detectors [29], cover-
ing the regions 4.6 < η < 4.9 and −3.3 < η < −3. The V0 detector 
is also used to provide the minimum bias (MB) trigger, defined 
by the coincidence of signals in the two sets of scintillators. The 
trigger condition used in this analysis is based on the coincidence 
of the MB trigger with the unlike-sign dimuon one (μμ-MB). The 
removal of beam-induced background is based on the timing in-
formation provided by the V0 and by two sets of Zero Degree 
Calorimeters (ZDC) [30] placed at ±112.5 m from the interaction 
point, along the beamline. The ZDCs are also used for the centrality 
estimation as it will be discussed in Sec. 3. Finally, for the study 
of the ϒ production as a function of the centrality of the colli-
sions, pile-up events in which two or more interactions occur in 
the same colliding bunch are removed using the information from 
SPD and V0.

Further selection criteria, commonly adopted in the ALICE 
quarkonium analyses (see e.g. [18,31]), are applied to the muon 
tracks forming the dimuon pair. Muon tracks must have a pseu-
dorapidity value in the range −4 < ημ < −2.5, corresponding 
to the muon spectrometer acceptance, and they should point to 
the interaction vertex to remove fake tracks and particles not 

directly produced in beam–beam interactions. Their transverse co-
ordinate at the end of the front absorber (Rabs) must be within 
17.6 cm < Rabs < 89.5 cm, to remove muons not passing the ho-
mogeneous region of the absorber. Finally, tracks reconstructed in 
the tracking chambers of the muon spectrometer should match the 
track segments reconstructed in the trigger system. This matching 
request helps to further reject hadron contamination and ensures 
that the reconstructed muons fulfill the trigger condition.

The data were collected with two beam configurations obtained 
by inverting the directions of the proton and Pb beams circulating 
inside the LHC. In this way it was possible to cover both a forward 
(2.03 < ycms < 3.53) and a backward (−4.46 < ycms < −2.96) 
dimuon rapidity interval, where the positive (negative) ycms refers 
to the proton (Pb) beam going towards the muon spectrometer. 
The collected integrated luminosities for the corresponding data 
samples, referred to as p–Pb (forward rapidity) and Pb–p (back-
ward rapidity) in the following, are L pPb

int = 8.4 ± 0.2 nb−1 and 
L Pbp

int = 12.8 ± 0.3 nb−1 [32].

3. Data analysis

The results presented in this paper are based on an analysis 
procedure similar to the one described in [18] for the study of the 
ϒ production in p–Pb collisions at 

√
sNN = 5.02 TeV.

The ϒ(1S), ϒ(2S) and ϒ(3S) production cross sections, cor-
rected by the branching ratio for the decay in a muon pair 
(B.R.ϒ→μ+μ− ), are obtained, for a given (�ycms, �pT) interval, as

d2σϒ
pPb

dycmsdpT
= Nϒ

L
pPb

int × (A × ε) × �ycms × �pT × B.R.ϒ→μ+μ−
,

(1)

where Nϒ is the number of signal counts and (A × ε) is the cor-
responding acceptance and efficiency correction in the kinematic 
bin under study, while the branching ratios are (2.48 ± 0.05)% for 
ϒ(1S), (1.93 ± 0.17)% for ϒ(2S) and (2.18 ± 0.21)% for ϒ(3S) [33].

The number of ϒ(nS) is obtained by fitting the unlike-sign 
dimuon invariant mass spectrum with a combination of signal 
shapes to describe the ϒ resonances and an empirical function 
to model the background. More in detail, the background is de-
scribed by several combinations of exponential and polynomial 
functions or by a Gaussian function with a mass-dependent width. 
For the resonance shapes, extended Crystal Ball functions [34], 
with power-law tails on the right and left sides of the mass peak 
are used. Alternatively, pseudo-Gaussian functions with a mass-
dependent width are also adopted [34]. The same signal shape 
is chosen for all the ϒ states. The mass of the ϒ(1S) and its 
width σϒ(1S) are free parameters of the fit, while the mass and 
the width of the ϒ(2S) and ϒ(3S) states are bound to those of the 
ϒ(1S) in the following way: mϒ(nS) = mϒ(1S) + (mPDG

ϒ(nS) − mPDG
ϒ(1S))

and σϒ(nS) = σϒ(1S) ×σ MC
ϒ(nS)

/σ MC
ϒ(1S)

. The mass value mPDG
ϒ(nS)

is taken 
from [33] and σ MC

ϒ(nS) is the width of the resonance as evaluated 
from a fit, with the aforementioned signal functions, to the spec-
trum obtained from the Monte Carlo (MC) simulation also used 
for the (A × ε) correction. Due to the signal-over-background ra-
tio of the order of ∼0.7 (∼1) in p–Pb (Pb–p), measured in a 3σ
region around the ϒ(1S) mass, the non-Gaussian tails of the ex-
tended Crystal Ball function can not be kept as free parameters of 
the fits. Hence, they are tuned on pp data at 

√
s = 13 TeV, the 

largest data sample collected by ALICE so far, or, alternatively, on 
p–Pb or pp MC simulations at 

√
sNN = 8.16 TeV and 

√
s = 8 TeV, 

respectively. The same tails are adopted for the ϒ(2S) and ϒ(3S) 
mass shapes. Examples of the fit to the invariant mass spectrum, 
for both the p–Pb and Pb–p samples, are shown in Fig. 1.
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Fig. 1. Invariant mass spectra of unlike-sign dimuons, integrated over pT, for Pb–p (left panel) and p–Pb (right panel) collisions. The shapes of the ϒ(1S), ϒ(2S) and ϒ(3S) 
resonances are shown (dash-dotted lines), together with the background function (dashed line) and the total fit (solid line).

The number of ϒ candidates, Nϒ , is evaluated as the average 
of the values obtained by varying the signal and background func-
tions as well as the fitting intervals (6 GeV/c2 < mμμ < 13 GeV/c2

or 7 GeV/c2 < mμμ < 12 GeV/c2). The statistical uncertainties are 
calculated as the average of the statistical uncertainties over the 
various fits and the standard deviation of the distribution of the 
Nϒ values provides the systematic uncertainties on the signal ex-
traction. For the ϒ(2S) and ϒ(3S) cases, an additional contribution 
to the systematic uncertainty is included, to account for possible 
variations of their width with respect to that of the ϒ(1S). In par-
ticular, their widths are allowed to vary between a minimum value 
σϒ(1S) and a maximum value σϒ(1S) × σ MC

ϒ(nS)/σ
MC
ϒ(1S) , where the ra-

tio σ MC
ϒ(nS)/σ

MC
ϒ(1S) is obtained from MC simulations alternative to 

the ones used for the (A × ε) correction, i.e. based on different ϒ
kinematic input shapes, as it will be discussed later on. A further 
5% systematic uncertainty is also included to account for possible 
residual discrepancies between the detector resolution in MC and 
in the data.

The total number of ϒ(1S), integrated over the full kine-
matic range, amounts to Nϒ(1S) = 909 ± 62 (stat.) ± 58 (syst.)
and Nϒ(1S) = 918 ± 55 (stat.) ± 51 (syst.) for the forward and 
backward-rapidity regions, respectively. Corresponding values for 
ϒ(2S) are Nϒ(2S) = 192 ± 39 (stat.) ± 17 (syst.) and Nϒ(2S) = 194 ±
34 (stat.) ± 16 (syst.), while for the ϒ(3S) the values are Nϒ(3S) =
48 ± 36 (stat.) ± 8 (syst.) and Nϒ(3S) = 95 ± 30 (stat.) ± 12 (syst.). 
The systematic uncertainty, amounting to ∼6% for the ϒ(1S) and 
∼8% for the ϒ(2S), is dominated by the choice of the tail pa-
rameters in the fit functions and, in the ϒ(2S) case, also by the 
allowed range of variation for the σϒ(2S) . In the ϒ(3S) case, the 
systematic uncertainties are slightly larger, amounting to ∼17% 
at forward rapidity and ∼12% at backward rapidity. For pT- or 
ycms-differential ϒ(1S) studies, the systematic uncertainties have a 
similar size, reaching ∼15% only in the highest pT bin (8 GeV/c <

pT < 15 GeV/c).
The acceptance and efficiency correction is calculated in a MC 

simulation, based on the GEANT3 transport code [35]. The MC 
simulation is performed on a run-by-run basis to closely follow 
the evolution of the performance of the detectors during the data 
taking. The ϒ(1S) are generated using rapidity and transverse mo-
mentum distributions tuned on p–Pb or Pb–p data at 

√
sNN =

8.16 TeV, through an iterative procedure [31]. The pT and ycms in-
tegrated (A ×ε) amounts to 0.300 ±0.006 for the ϒ(1S) at forward 
rapidity and 0.273 ± 0.007 at backward rapidity, where the quoted 
uncertainties are systematic, the statistical uncertainties being neg-

ligible. The lower (A ×ε) values measured in the Pb–p period, with 
respect to the p–Pb one, are due to detector instabilities which af-
fected temporarily the behaviour of two tracking chambers. The 
limited size of the data sample do not allow for a similar tuning 
of the pT and ycms distributions on data for the ϒ(2S) and ϒ(3S) 
resonances, hence the same shapes as for the ϒ(1S) are used. The 
resulting (A × ε) values show a negligible difference with respect 
to the ϒ(1S) ones. The systematic uncertainties on (A × ε) include 
contributions related to the choice of the MC pT and ycms input 
distributions for the ϒ states and to the evaluation of the track-
ing and trigger efficiencies. The systematic uncertainties associated 
to the MC ϒ input shapes are evaluated as the maximum differ-
ence between the (A × ε) evaluated with the aforementioned MC 
tuned on data and the values extracted from alternative MC sam-
ples based on pT and ycms ϒ distributions either measured by 
the LHCb experiment in pp collisions at 

√
s = 8 TeV [36] or ob-

tained from existing CDF and LHC pp measurements [37–39] via 
a procedure similar to the one described in [40]. Nuclear shadow-
ing is also included to account for its influence on the bottomo-
nium kinematic distributions. These systematic uncertainties for 
the three resonances vary between 1% and 1.8%. They have a neg-
ligible pT-dependence, while they reach up to 4% at the edges of 
the rapidity intervals. The systematic uncertainty on the trigger ef-
ficiency consists of two contributions, one related to the evaluation 
of the intrinsic efficiency of each muon-trigger chamber (1%) and 
one to small differences between the trigger response function es-
timated via data and MC (0.6% in p–Pb and 0.2% in Pb–p, when 
integrating over ycms and pT). This last source of uncertainty is 
below 1% also for the pT or ycms-differential studies. The system-
atic uncertainty associated to the tracking efficiency is evaluated 
comparing the dimuon tracking efficiencies computed both in data 
and MC. These efficiencies are computed combining the efficiency 
of each single muon-tracking chamber, obtained relying on the 
redundancy of the tracking system. The resulting systematic uncer-
tainties amount to 1% for p–Pb and 2% for Pb–p, for both the ycms
and pT differential studies and for results integrated over the kine-
matic domain. Finally, an additional 1% systematic uncertainty on 
the choice of the χ2 cut on the matching between the tracks re-
constructed in the tracking and in the trigger systems is included. 
The systematic uncertainties associated to the trigger, tracking and 
matching efficiencies are considered to be identical for both the 
ϒ(1S) and ϒ(2S) resonances.

The integrated luminosities are obtained as Lint = NMB/σMB. 
The number of equivalent minimum bias events, NMB, is evaluated 
by multiplying the number of events collected with the μμ-MB
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trigger by a factor Fnorm, corresponding to the inverse of the prob-
ability of having a triggered dimuon in a MB event [31]. This quan-
tity is computed, run by run, as the ratio between the number of 
collected MB triggers and the number of times the dimuon trig-
ger condition is verified in the MB trigger sample. Once averaged 
over all the runs, considering as weight the number of μμ-MB
triggers in each run, Fnorm amounts to 679 ± 7 at forward ra-
pidity and 372 ± 4 at backward rapidity. The quoted uncertainty 
(1%) is systematic and accounts for differences coming from an al-
ternative evaluation method, based on the information provided 
by the level-0 trigger scalers, as detailed in [41]. The V0-based 
MB cross section (σMB) is measured from a van der Meer scan, 
and it amounts to 2.09 ± 0.04 b for the p–Pb configuration and 
2.10 ± 0.04 b for the Pb–p one [32]. In the luminosity systematic 
uncertainty quoted in Table 1, the uncertainties on Fnorm and σMB
are combined, together with a 1.1% (0.6%) contribution due to the 
difference between the luminosities obtained with the V0 and T0 
detectors in the p–Pb (Pb–p) configurations [32].

The nuclear effects on the ϒ production are studied compar-
ing the corresponding p–Pb production cross section to the one 
measured in pp collisions, d2σϒ

pp/dycmsdpT, obtained at the same 
centre-of-mass energy and scaled by the atomic mass number of 
the Pb nucleus (APb = 208), through the so-called nuclear modifi-
cation factor RpPb, defined as

RpPb = d2σϒ
pPb/dycmsdpT

APb × d2σϒ
pp/dycmsdpT

. (2)

The proton–proton reference is based on the LHCb measure-
ments of the bottomonium production cross section in pp col-
lisions at 

√
s = 8 TeV [36], in −4.5 < ycms < −2.5 and 2 <

ycms < 4, corrected by a factor to account for the slightly dif-
ferent centre-of-mass energies of the interactions. This correc-
tion factor is evaluated interpolating the LHCb measurements at √

s = 7, 8 and 13 TeV [36,42], as detailed in [43]. It amounts 
to 1.02 for both the ϒ(1S) and ϒ(2S), showing a negligible 
ycms dependence and varying by 1% from low to high pT. 
A systematic uncertainty on the determination of this factor 
(1%) is assigned, based on the choice of the different functions 
used for the energy-interpolation. The ϒ production cross sec-
tions in pp collisions at 

√
s = 8 TeV are also measured by 

ALICE [44]. The results show good agreement with the corre-
sponding LHCb values, but unlike the LHCb measurements, they 
cover a slightly narrower rapidity region, 2.5 < ycms < 4, which 
does not match the rapidity coverage of the p–Pb measure-
ments. The σϒ(1S)

pp cross sections, integrated over pT and ycms, are 
98.5 ± 0.1 (stat.) ± 3.4 (syst.) nb in the range 2.03 < ycms < 3.53
and 62.0 ± 0.1 (stat.) ± 2.1 (syst.) nb in the range −4.46 < ycms <

−2.96. The corresponding cross sections for the ϒ(2S) are about 
a factor 3 smaller, being σϒ(2S)

pp = 31.9 ± 0.1 (stat.) ± 2.9 (syst.) nb
at forward rapidity and 19.7 ± 0.05 (stat.) ± 1.8 (syst.) nb at back-
ward rapidity. The ϒ(3S) production cross sections are σϒ(3S)

pp =
12.9 ± 0.1 (stat.) ± 1.3 (syst.) nb at forward rapidity and 8.3 ±
0.1 (stat.) ± 0.8 (syst.) nb at backward rapidity.

The large data sample collected in p–Pb collisions in 2016 al-
lows the ϒ(1S) production also to be studied as a function of the 
collision centrality. The centrality determination is based on a hy-
brid model, as discussed in detail in [45]. In this approach, the 
centrality is determined by measuring the energy released in the 
ZDC positioned in the Pb-going direction. For each ZDC-selected 
centrality class, the average number of collisions 〈Ncoll〉 is obtained 
as 〈Ncoll〉 = 〈Npart〉-1, assuming the charged particle multiplicity 
measured at midrapidity is proportional to the number of partic-
ipant nucleons, Npart. The centrality classes used in this analysis 
correspond to 2–20%, 20–40%, 40–60% and 60–90% of the MB cross 

section. The 0–2% most central collisions are excluded from this 
analysis because the fraction of events coming from pile-up in the 
ZDC is large in this centrality interval and a residual contamina-
tion might still be present in spite of the applied pile-up rejection 
cuts [46].

For centrality studies, the modification induced by the nuclear 
matter on the ϒ(1S) production is quantified through the nuclear 
modification factor denoted by Q pPb, to be distinguished from RpPb

since potential biases from the centrality estimation, unrelated to 
nuclear effects, might be present [45]. The Q pPb is defined as

Q pPb = Nϒ

B.R.ϒ→μ+μ− × NMB × (A × ε) × 〈TpPb〉 × σϒ
pp

. (3)

The quantities entering Eq. (3) are evaluated according to the 
previously discussed procedure, with few minor differences. When 
extracting the ϒ(1S) signal, for example, no significant variation of 
the ϒ(1S) width as a function of the collision centrality is fore-
seen. Hence for centrality studies, the ϒ(1S) width is fixed to the 
value obtained in the fit to the centrality-integrated invariant mass 
spectrum. The uncertainty associated to the choice of the width is 
accounted for in the evaluation of the systematic uncertainty on 
the signal extraction. No significant centrality dependence is ex-
pected for the (A × ε) either, so the centrality-integrated values 
are also used for all the centrality classes. To evaluate the number 
of MB events in each centrality class i, F i

norm is obtained from the 
centrality-integrated quantity scaled by the ratio of the number 
of minimum bias and dimuon-triggered events in each central-
ity interval with respect to the corresponding centrality integrated 
quantities, (Ni

MB/NMB)/(Ni
μμ−MB/Nμμ−MB). Alternatively, F i

norm is 
computed directly for each centrality class and a further 1% dif-
ference between the two approaches is included in the systematic 
uncertainty. The statistical uncertainty on F i

norm is negligible. Fi-
nally, 〈TpPb〉 is the centrality-dependent average nuclear thickness 
function, computed with the Glauber framework [45,47].

The systematic uncertainties entering the cross section and nu-
clear modification factor evaluation are summarised in Table 1.

When RpPb is computed as a function of pT or ycms, the sys-
tematic uncertainties on the signal extraction, tracking, trigger and 
matching efficiencies, MC input shapes and a fraction of the un-
certainty on the pp reference are considered as bin-by-bin un-
correlated. On the contrary, the correlated contributions to the pp
reference and the luminosity uncertainties, which are common to 
the p–Pb or Pb–p systems, are considered as correlated over pT or 
ycms. In the Q pPb evaluation, the uncertainties on signal extraction, 
on the MC input shapes and on 〈TpPb〉 depend on the central-
ity of the collision, while the other uncertainties are common to 
all classes and, therefore, considered as correlated over centrality. 
Even if most central events are not included in this analysis, a fur-
ther 2% centrality-uncorrelated systematic uncertainty is assigned 
to the Q pPb values, to account for residual pile-up which might 
still introduce a bias in the measurement. This systematic uncer-
tainty is evaluated by comparing the expected pile-up fraction, 
computed from the pile-up probability associated to the observed 
interaction rate, and the amount of pile-up events removed by the 
event selection procedure. For the ϒ(2S) and ϒ(3S) studies, sim-
ilar values of the systematic uncertainties are obtained, the main 
difference being the larger signal extraction uncertainties.

4. Results

The inclusive ϒ(1S) production cross sections are evaluated in 
the rapidity regions 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96
and their values, computed according to Eq. (1), are:
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Table 1
Systematic uncertainties, in percentage, on the three ϒ cross sections and nuclear modification factors for both p–Pb and Pb–p collisions. Ranges in parentheses refer to 
the maximum variation as a function of centrality, ycms or pT. When no ranges are specified, the quoted values are valid for both the integrated and the differential 
measurements. Error type I means that the uncertainties are correlated over pT or ycms, while error type II refers to uncertainties correlated versus centrality. If no error 
type is specified, the uncertainties are considered as uncorrelated. The uncertainties on the pp reference and luminosity result from the combination of ycms-uncorrelated 
and correlated contributions. For the systematic uncertainty on the luminosity determination, the two terms, defined according to [32], are separately quoted in the table, 
but combined when results are shown in the figures. Uncertainties on the B.R. are taken from [33].

Sources ϒ(1S) ϒ(2S) ϒ(3S)

p–Pb Pb–p p–Pb Pb–p p–Pb Pb–p

Signal extraction 6.4 (5.1–15.9) 5.7 (5.5–8.5) 8.8 8.4 17.4 12.6
Trigger efficiency (II) 1.2 (1.1–1.3) 1.0 (1.0–1.1) 1.2 1.0 1.2 1.0
Tracking efficiency (II) 1.0 2.0 1.0 2.0 1.0 2.0
Matching efficiency (II) 1.0 1.0 1.0 1.0 1.0 1.0
MC inputs 1.0 (0.5–4.0) 1.0 (0.4–4.0) 1.3 1.6 1.4 1.8
pp reference (II) 0.2 (0.1–0.4) 0.2 (0.1–0.4) 0.2 0.3 0.2 0.2
pp reference (I,II) 2.8 2.8 2.8

L
pPb

int (II) 2.1 2.2 2.1 2.2 2.1 2.2

L
pPb

int (I,II) 0.5 0.7 0.5 0.7 0.5 0.7
Pile-up 2.0 2.0 – –
〈TpPb〉 2.1–5.8 – –
B.R. (I) 2.0 8.8 9.6

σ
ϒ(1S)

pPb (2.03 < ycms < 3.53)

= 14.5 ± 1.0 (stat.) ± 1.0 (uncor. syst.) ± 0.3 (cor. syst.) μb,

σ
ϒ(1S)

pPb (−4.46 < ycms < −2.96)

= 10.5 ± 0.6 (stat.) ± 0.7 (uncor. syst.) ± 0.2 (cor. syst.) μb.

The corresponding values for the ϒ(2S) production cross sec-
tions are:

σ
ϒ(2S)

pPb (2.03 < ycms < 3.53)

= 3.9 ± 0.8 (stat.) ± 0.4 (uncor. syst.) ± 0.3 (cor. syst.) μb,

σ
ϒ(2S)

pPb (−4.46 < ycms < −2.96)

= 2.8 ± 0.5 (stat.) ± 0.3 (uncor. syst.) ± 0.3 (cor. syst.) μb,

and for the ϒ(3S) are:

σ
ϒ(3S)

pPb (2.03 < ycms < 3.53)

= 0.87 ± 0.66 (stat.) ± 0.15 (uncor. syst.)

± 0.08 (cor. syst.) μb,

σ
ϒ(3S)

pPb (−4.46 < ycms < −2.96)

= 1.24 ± 0.39 (stat.) ± 0.15 (uncor. syst.)

± 0.12 (cor. syst.) μb.

The systematic uncertainties have two terms, one correlated 
and one uncorrelated as a function of rapidity.

The data collected in p–Pb collisions at 
√

sNN = 8.16 TeV allow 
for the measurement of the ϒ(1S) production cross sections differ-
entially in ycms bins or in pT intervals, up to pT < 15 GeV/c. The 
resulting cross sections are shown in Fig. 2 as a function of rapid-
ity, integrated over transverse momentum, and in Fig. 3, as a func-
tion of pT, in the forward- and backward-rapidity regions. In these 
figures, as in all the following ones, the statistical uncertainties are 
shown as vertical error bars, while the systematic uncertainties are 
represented as boxes around the points. The horizontal error bars 
correspond to the ycms or pT bin widths. The cross sections eval-
uated at forward and backward rapidities are compared with the 
pp ones, obtained through the aforementioned interpolation pro-
cedure, scaled by the Pb atomic mass number. The comparison 
shows that in the forward-rapidity region the ϒ(1S) cross sections 
are smaller than the pp ones, in particular at low pT, suggesting 
the presence of CNM effects at play in p–Pb collisions. On the con-
trary, in the backward-rapidity range the pp and the p–Pb cross 
Fig. 2. ϒ(1S), ϒ(2S) and ϒ(3S) differential cross sections as a function of ycms in 
p–Pb collisions at √sNN = 8.16 TeV. The corresponding pp reference cross sections, 
obtained through the procedure described in Sec. 3 and scaled by APb, are shown 
as bands.

Fig. 3. ϒ(1S) differential cross section as a function of pT, at forward (closed sym-
bols) and backward (open symbols) rapidity, at √sNN = 8.16 TeV. The pp reference 
cross section, obtained through the procedure described in Sec. 3 and scaled by APb, 

is shown as a band.
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Fig. 4. Ratio of ϒ(nS) over ϒ(1S) yields in p–Pb collisions at √sNN = 8.16 TeV and 
in pp collisions at √s = 8 TeV [36].

sections are closer and nuclear effects seem to have a less promi-
nent role.

The limited available data sample allows for the evaluation of 
the ϒ(2S) and ϒ(3S) cross sections in the forward and backward-
rapidity regions only integrating over the corresponding ycms and 
pT ranges, as shown in Fig. 2. A suppression with respect to the 
corresponding pp reference cross sections, scaled by APb, is ob-
served.

Given the relatively small mass difference between the ϒ(1S) 
and ϒ(2S) (or ϒ(3S)) resonances, most of the systematic uncer-
tainties, except those on the signal extraction and on the choice 
of the pT- and ycms-input shapes used in the MC, cancel in the 
ratio of the resonance yields, multiplied by their branching ratios, 
defined as

[ϒ(nS)/ϒ(1S)]pPb = Nϒ(nS)/(A × ε)ϒ(nS)

Nϒ(1S)/(A × ε)ϒ(1S)

.

The values of the ϒ(2S) over ϒ(1S) ratio, obtained at forward 
and backward rapidity, are similar:

[ϒ(2S)/ϒ(1S)]pPb(2.03 < ycms < 3.53)

= 0.21 ± 0.05 (stat.) ± 0.02 (syst.),

[ϒ(2S)/ϒ(1S)]pPb(−4.46 < ycms < −2.96)

= 0.21 ± 0.04 (stat.) ± 0.01 (syst.).

As shown in Fig. 4, the ratio [ϒ(2S)/ϒ(1S)]pPb at 
√

sNN = 8.16 TeV 
is compatible, within uncertainties, with the results obtained by 
the LHCb Collaboration in pp collisions at 

√
s = 8 TeV [36], in a 

slightly wider kinematic range (2 < ycms < 4.5, pT < 15 GeV/c).
Similar conclusions can be obtained from the comparison of the 

ϒ(3S) over ϒ(1S) ratio, also shown in Fig. 4. The corresponding 
values at forward and backward rapidity are:

[ϒ(3S)/ϒ(1S)]pPb(2.03 < ycms < 3.53)

= 0.053 ± 0.039 (stat.) ± 0.007 (syst.),

[ϒ(3S)/ϒ(1S)]pPb(−4.46 < ycms < −2.96)

= 0.102 ± 0.032 (stat.) ± 0.009 (syst.).

The size of nuclear effects in p–Pb collisions can be bet-
ter quantified through the nuclear modification factor defined in 
Eq. (2). The numerical values for the ϒ(1S) RpPb in the forward-
and in the backward-rapidity regions, integrating over pT, are:

Fig. 5. ϒ(1S) RpPb values at √
sNN = 8.16 TeV compared to those obtained at √

sNN = 5.02 TeV in the same ycms interval [18]. All systematic uncertainties are 
considered as uncorrelated between the results at √sNN = 8.16 TeV and √sNN =
5.02 TeV. The RpPb values at the two energies are slightly displaced horizontally to 
improve visibility.

Rϒ(1S)

pPb (2.03 < ycms < 3.53)

= 0.71 ± 0.05 (stat.) ± 0.05 (uncor. syst.) ± 0.02 (cor. syst.),

Rϒ(1S)

pPb (−4.46 < ycms < −2.96)

= 0.81 ± 0.05 (stat.) ± 0.05 (uncor. syst.) ± 0.02 (cor. syst.),

where (uncor. syst.) and (cor. syst.) refer to uncorrelated and cor-
related systematic uncertainties as a function of rapidity.

The measured RpPb values, shown in Fig. 5, indicate a suppres-
sion of the ϒ(1S) production in p–Pb collisions, with respect to the 
one in pp collisions, both at forward and backward rapidity, with 
a slightly stronger suppression at forward ycms. The RpPb is found 
to be 4.0σ and 2.4σ below unity in p–Pb and Pb–p collisions, re-
spectively. The results are compatible with the corresponding RpPb
values measured in p–Pb collisions at 

√
sNN = 5.02 TeV [18], also 

shown in Fig. 5. From the comparison between the results obtained 
at the two energies, an improvement in the precision of the ϒ(1S) 
RpPb measurements at 

√
sNN = 8.16 TeV can be noticed, given the 

reduced size of the statistical and systematic uncertainties. The 
improvement of the latter contribution is mainly related to the re-
duction in the uncertainties associated to the tracking efficiencies 
and to refinements in the determination of the pp reference [18].

The rapidity dependence of the ϒ(1S) RpPb, explored in nar-
rower ycms intervals, is shown in Fig. 6, confirming the suppres-
sion already observed in the ycms-integrated case. The results are 
also compared with the ϒ(1S) LHCb measurements [23] at the 
same centre-of-mass energy and in slightly wider kinematic ranges 
(−4.5 < ycms < −2.5 and 2 < ycms < 4, pT< 25 GeV/c). Fair agree-
ment between the two sets of results can be seen.

The pT dependence of the ϒ(1S) RpPb is shown in Fig. 7. 
A slight decrease of the ϒ(1S) nuclear modification factor, with de-
creasing pT, is observed. The behaviour is similar both at backward 
and forward rapidities.

The ycms and pT dependence of the ϒ(1S) RpPb are compared, 
in Fig. 6 and Fig. 7, to several models (referred in the following 
as nuclear shadowing models), based on EPS09 [8], nCTEQ15 [10]
or EPPS16 [9] sets of nuclear parton distribution functions. The 
EPS09 next-to-leading order (NLO) parametrisation is combined 
with a NLO Colour Evaporation Model (CEM) [48], which describes 
the ϒ production. The corresponding uncertainty bands, shown 
in Fig. 6 and Fig. 7, are dominated by the uncertainties of the 
EPS09 parametrisation. The nCTEQ15 and the EPPS16 NLO nPDFs 
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Fig. 6. ϒ(1S) RpPb values at √sNN = 8.16 TeV compared with the corresponding 
LHCb results [23], as a function of ycms. The RpPb values are also compared to 
model calculations based on several implementations of nuclear shadowing (EPS09 
NLO [8,14,48], EPPS16 and nCTEQ15 [9–11,49–51]) and on parton coherent energy 
loss predictions, with or without the inclusion of the EPS09 shadowing contri-
bution [13,14]. A theoretical model including a shadowing contribution based on 
nCTEQ15 nPDFs on top of a suppression induced by comover interactions [15,52]
is also shown. For the LHCb results, the vertical error bars represent the quadratic 
sum of the statistical and systematic uncertainties.

sets are implemented following the Bayesian reweighting proce-
dure described in [11,49–51]. The uncertainty bands, in this case, 
represent the convolution of the uncertainties on the nPDFs sets 
and those on the factorisation scales. It can be observed that the 
shadowing calculations describe fairly well the pT and ycms depen-
dence of the ϒ(1S) nuclear modification factor in 2.03 < ycms <

3.05, while they overestimate the results obtained in −4.46 <
ycms < −2.96. Furthermore, while the pT dependence of the AL-
ICE measurements indicate slightly stronger cold nuclear matter 
effects at low pT, the shadowing calculations suggest a flatter be-
haviour. Finally, the ycms dependence of the RpPb is also compared 
with a model which includes the effects of parton coherent en-
ergy loss with or without the contribution of the EPS09 nuclear 
shadowing [13,14]. The model predicts a mild dependence of the 
energy loss mechanism on rapidity. When the nuclear shadowing 
contribution is included, the model describes the forward-rapidity 
results, while it slightly overestimates the backward-rapidity RpPb. 
The ϒ(1S) RpPb is also compared with a theoretical model which 
includes a shadowing contribution, based on the nCTEQ15 set of 
nPDFs, on top of a suppression of the ϒ(1S) production due to 
interactions with comoving particles [15,52]. The uncertainties as-
sociated to this theoretical calculation include a small contribution 
from the uncertainty on the comovers cross section and are domi-
nated by the uncertainties on the shadowing. Also in this case the 
calculation slightly overestimates the ALICE measurements at back-
ward ycms, while at forward ycms the data agree with the model. 
It can be noted that the interpretation of the ϒ(1S) behaviour in 
p–Pb collisions would also benefit from a precise knowledge, so far 
still affected by large uncertainties, of the feed-down contribution 
of the excited states into the ϒ(1S).

The ϒ(1S) nuclear modification factor is evaluated as a function 
of the collision centrality. The Q pPb results, shown in Fig. 8, are 
presented as a function of the average number of collisions, 〈Ncoll〉
and it can be observed that both at forward and backward rapidity 
the ϒ(1S) centrality dependence is rather flat.

Finally, the nuclear modification factor is also evaluated for the 
ϒ(2S) and ϒ(3S) resonances, in the forward and backward-ycms

intervals, as shown in Fig. 9. The corresponding ϒ(2S) RpPb values 
are:

Rϒ(2S)

pPb (2.03 < ycms < 3.53)

= 0.59 ± 0.12 (stat.) ± 0.05 (uncor. syst.) ± 0.02 (cor. syst.)

Rϒ(2S)

pPb (−4.46 < ycms < −2.96)

= 0.69 ± 0.12 (stat.) ± 0.05 (uncor. syst.) ± 0.02 (cor. syst.)

the ϒ(2S) suppression being compatible with unity within 3.1σ at 
forward ycms and 2.3σ at backward ycms. The ϒ(3S) RpPb values 
are:

Rϒ(3S)

pPb (2.03 < ycms < 3.53)

= 0.32 ± 0.24 (stat.) ± 0.06 (uncor. syst.) ± 0.01 (cor. syst.)

Rϒ(3S)

pPb (−4.46 < ycms < −2.96)

= 0.71 ± 0.23 (stat.) ± 0.09 (uncor. syst.) ± 0.02 (cor. syst.)

The ϒ(3S) suppression is compatible with unity within 2.7σ at for-
ward ycms and 1.2σ at backward ycms. The difference in the RpPb
of the ϒ(2S) and ϒ(1S) amounts to 0.5σ in both rapidity inter-
vals, suggesting, in p–Pb collisions, a similar modification of the 
production yields of the two ϒ states, with respect to pp colli-
sions. Unfortunately, the large uncertainties on the ϒ(3S) prevent 
robust conclusions on the behaviour of the most loosely bound 
bottomonium state. The model which includes both the nuclear 
shadowing contribution (nCTEQ15) and interactions with comoving 
particles [15,52] suggests a small difference between the nuclear 
modification factors of the three ϒ states. This difference is slightly 
more important in the backward-rapidity range, while it becomes 
negligible at forward ycms. By evaluating the ratio of the ϒ(nS)

to ϒ(1S) nuclear modification factors, the shadowing contribution 
and most of the theory uncertainties, as well as some of the un-
certainties on the data, cancel out. The shape of the theoretical 
calculation is, hence, mainly driven by the interactions with the 
comoving particles, which affect mostly the excited ϒ states in the 
backward rapidity region. As shown in the lower panel of Fig. 9, 
the ALICE measurements and the model are in fair agreement, even 
if the uncertainties on the data do not yet allow a firm conclusion 
on the role of comovers to be drawn.

5. Conclusions

The ALICE measurements of the rapidity, transverse momentum 
and centrality dependence of the inclusive ϒ(1S) nuclear modi-
fication factor in p–Pb collisions at 

√
sNN = 8.16 TeV have been 

presented. The results show a suppression of the ϒ(1S) yields, 
with respect to the ones measured in pp collisions at the same 
centre-of-mass energy. The RpPb values are similar at forward and 
backward rapidity with a slightly stronger suppression at low pT, 
while in both rapidity intervals there is no evidence for a central-
ity dependence of the ϒ(1S) Q pPb. The results obtained at 

√
sNN =

8.16 TeV are similar within uncertainties to those measured by 
ALICE in p–Pb collisions at the lower energy of 

√
sNN = 5.02 TeV 

and show a good agreement with the LHCb measurements at the 
same centre-of-mass energy. Models based on nuclear shadowing, 
coherent parton energy loss or interactions with comoving parti-
cles fairly describe the data at forward rapidity, while they tend to 
overestimate the RpPb at backward ycms. The ϒ(2S) RpPb has also 
been measured, showing a strong suppression, similar to the one 
measured for the ϒ(1S) in the two investigated rapidity intervals. 
Finally, a first measurement of the ϒ(3S) has also been performed, 
even if the large uncertainties prevent a detailed comparison of its 
behaviour in p–Pb collisions with respect to the other bottomo-
nium states. These new bottomonium measurements represent an 
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Fig. 7. ϒ(1S) RpPb as a function of pT for Pb–p (left panel) and p–Pb collisions (right panel). The RpPb values are compared with theoretical calculations based on EPS09 
NLO [14,48], nCTEQ15 and EPPS16 [9–11,49–51] shadowing implementations. Details on the theory uncertainty bands are discussed in the text.

Fig. 8. ϒ(1S) Q pPb as a function of 〈Ncoll〉, for Pb–p (left panel) and p–Pb collisions (right panel).

important baseline for the understanding of the role of CNM ef-
fects in p–Pb collisions and open up the way for future precision 
analyses with the upcoming LHC Run 3 and Run 4 data taking pe-
riods.
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R. Anwar 125, N. Apadula 79, L. Aphecetche 114, H. Appelshäuser 68, S. Arcelli 26, R. Arnaldi 58, M. Arratia 79, 
I.C. Arsene 20, M. Arslandok 103, A. Augustinus 33, R. Averbeck 106, S. Aziz 61, M.D. Azmi 16, A. Badalà 55, 
Y.W. Baek 40, S. Bagnasco 58, X. Bai 106, R. Bailhache 68, R. Bala 100, A. Baldisseri 137, M. Ball 42, 
S. Balouza 104, R. Barbera 27, L. Barioglio 25, G.G. Barnaföldi 145, L.S. Barnby 93, V. Barret 134, P. Bartalini 6, 
K. Barth 33, E. Bartsch 68, F. Baruffaldi 28, N. Bastid 134, S. Basu 143, G. Batigne 114, B. Batyunya 75, 
D. Bauri 48, J.L. Bazo Alba 111, I.G. Bearden 88, C. Bedda 63, N.K. Behera 60, I. Belikov 136, 
A.D.C. Bell Hechavarria 144, F. Bellini 33, R. Bellwied 125, V. Belyaev 92, G. Bencedi 145, S. Beole 25, 
A. Bercuci 47, Y. Berdnikov 97, D. Berenyi 145, R.A. Bertens 130, D. Berzano 58, M.G. Besoiu 67, L. Betev 33, 
A. Bhasin 100, I.R. Bhat 100, M.A. Bhat 3, H. Bhatt 48, B. Bhattacharjee 41, A. Bianchi 25, L. Bianchi 25, 
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S. Sadhu 141, S. Sadovsky 90, K. Šafařík 36, S.K. Saha 141, B. Sahoo 48, P. Sahoo 48,49, R. Sahoo 49, S. Sahoo 65, 
P.K. Sahu 65, J. Saini 141, S. Sakai 133, S. Sambyal 100, V. Samsonov 92,97, D. Sarkar 143, N. Sarkar 141, 
P. Sarma 41, V.M. Sarti 104, M.H.P. Sas 63, E. Scapparone 53, B. Schaefer 95, J. Schambach 119, H.S. Scheid 68, 
C. Schiaua 47, R. Schicker 103, A. Schmah 103, C. Schmidt 106, H.R. Schmidt 102, M.O. Schmidt 103, 
M. Schmidt 102, N.V. Schmidt 68,95, A.R. Schmier 130, J. Schukraft 88, Y. Schutz 33,136, K. Schwarz 106, 
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